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Definition

Edge-colouring

Let G = (V ,E ) be an undirected graph.

k-edge-colouring: function c : E 7→ [1, k]

proper edge-colouring: c(uv ) 6= c(vw).
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k-edge-colouring: function c : E 7→ [1, k]
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Not proper!

Properly-coloured walk: does not use consecutively two
edges of the same colour.
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Introduced by Chen and Daykin in 1976.
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Definition

Context

Introduced by Chen and Daykin in 1976.

Applications in bioinformatics and chemistry.

Powerful model.
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Our problem

Proper connectivity

An edge-coloured graph Gc = (V ,E , c) is properly-connected
if and only if there is a properly-coloured walk from every
vertex to every other.
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f → e → d → c → b
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No properly-coloured walk be-
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Our problem

Connecting edge-colouring

Let G = (V ,E ) be a connected graph. A k-edge-colouring is
connecting iff Gc = (V ,E , c) is properly-connected.

Proper-walk connection number: smallest k such that

there exists a connecting k-edge-colouring of G?
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The cases k 6= 2

Trivial bounds

We need between 1 and n − 1 colours.
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The cases k 6= 2

Connecting 3-edge-colouring

If G is a tree, we need ∆(G ) colours.
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Introduction Results Conclusion

The cases k 6= 2

Connecting 3-edge-colouring

If G is a tree, we need ∆(G ) colours.

If G has a cycle: 3 colours are always enough!

The graph we can connect with k > 3 colours are all the
graphs except the trees who have a vertex of degree > k.
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Bipartite graphs

Bridges in bipartite graphs

All the paths between two vertices in a bipartite graph have
same parity!

Bridges at even distance must have the different colours.
Bridges at odd distance must have the same colour.
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Bipartite graphs

Connectability of bipartite graphs

These graphs cannot be connected with two colours!
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Bipartite graphs

Connectability of bipartite graphs

These graphs cannot be connected with two colours!

Theorem

A bipartite graph G can be connected with two colours if and
only if it can be made 2-edge-connected by adding at most
one edge.
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2-edge-colouring

Can we generalize it?
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2-edge-colouring

The power of odd cycles
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2-edge-colouring

Stubborn edges

The set S of stubborn edges is the set of the edges that
belong to every odd cycle of the graph.

The S -free components of the graph G are the connected
components of G \ S .

Theorem

Let G be a non-bipartite 2-edge-coloured graph. Then, there
exists an S -free component K of G such that there is no
properly-coloured walk between two vertices u, v /∈ K that
goes through a vertex w ∈ K.
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2-edge-colouring

Existence of connecting 2-edge-colourings

Theorem

A connected non-bipartite graph G can be connected with two
colours if and only if there exists a S -free component K of G
such that G \ K is empty or can be made 2-edge-connected by
adding at most one edge.
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2-edge-colouring

Example of connectable graph
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2-edge-colouring

Example of non-connectable graph
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Putting everything together

The minimum number of colours required for a connecting
edge-colouring of a graph G is:

1 if G is complete;

its maximum degree ∆(G ) if G is a tree;

2 if G is bipartite and can be made 2-edge-connected by
adding at most one edge;

2 if G is non-bipartite and contains an S -free component
K such that G \ K is empty or can be made
2-edge-connected by adding at most one edge;

3 otherwise

In every case, we can find an optimal connecting colouring in
polynomial time.
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Ideas for future work

Stronger definitions of connectivity (cycles? spanning
closed walk?)

Connecting with trails or paths instead of walks?

Stretch of the edge-colouring?

Extension of partial edge-colouring?

Study of directed graphs?
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Thank you!
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