

Connecting edge-colouring

Jørgen Bang-Jensen **Thomas Bellitto**
Anders Yeo

University of Southern Denmark

October 30, 2019

1 Introduction

- Definition
- Our problem

2 Results

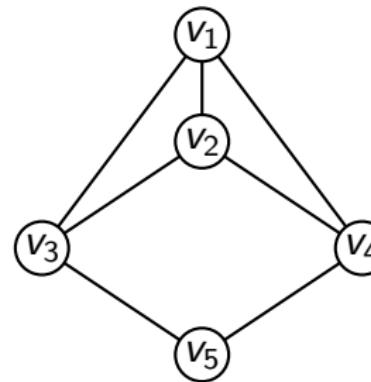
- The cases $k \neq 2$
- Bipartite graphs
- 2-edge-colouring

3 Conclusion

Edge-colouring

Let $G = (V, E)$ be an undirected graph.

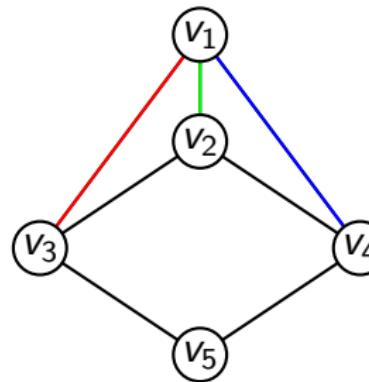
- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

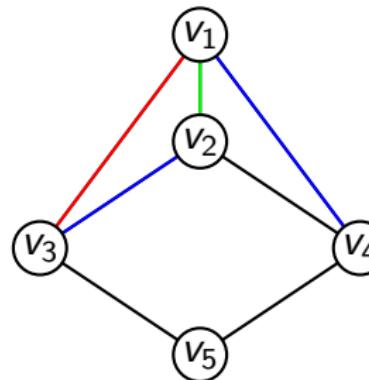
- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

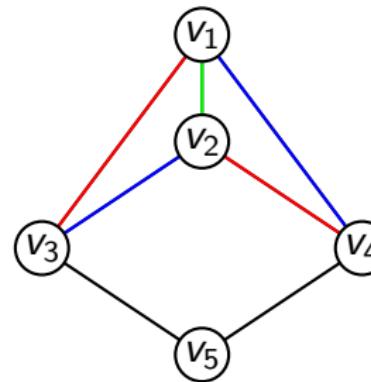
- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

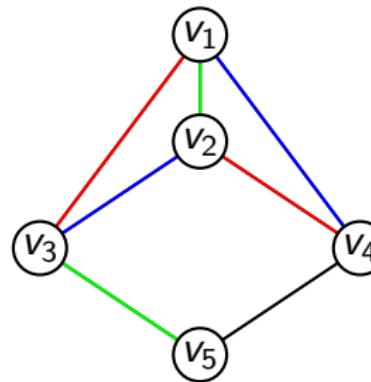
- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

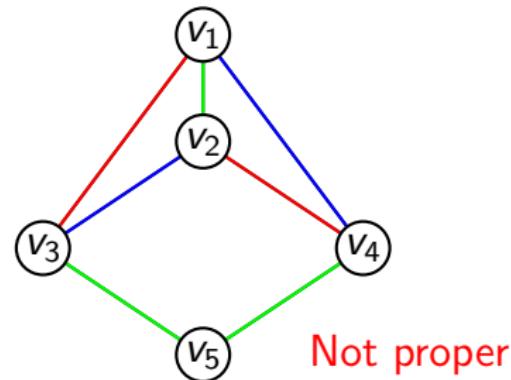
- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

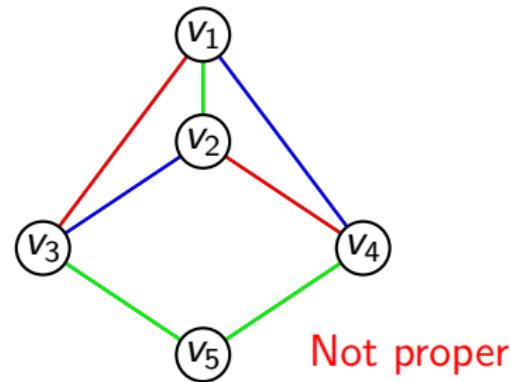
- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

- k -edge-colouring: function $c : E \mapsto [1, k]$
- proper edge-colouring: $c(uv) \neq c(vw)$.



- Properly-coloured walk: does not use consecutively two edges of the same colour.

Context

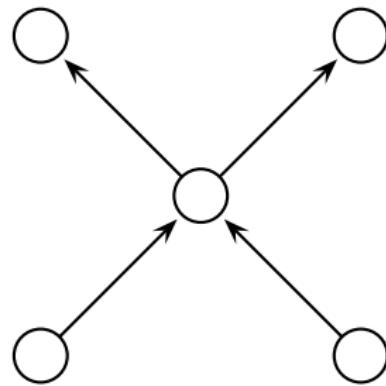
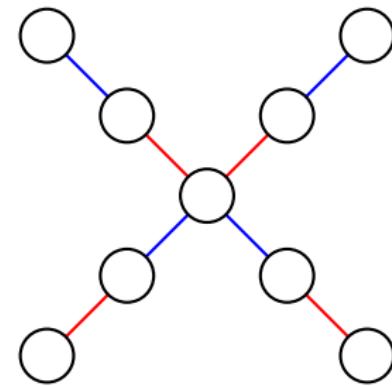
- Introduced by Chen and Daykin in 1976.

Context

- Introduced by Chen and Daykin in 1976.
- Applications in bioinformatics and chemistry.

Context

- Introduced by Chen and Daykin in 1976.
- Applications in bioinformatics and chemistry.
- Powerful model.

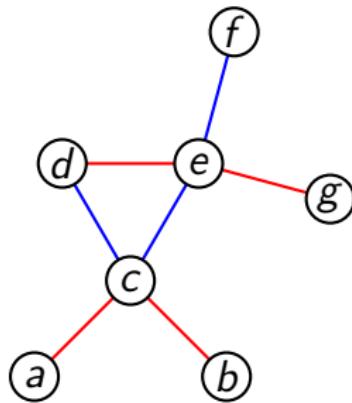


Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.

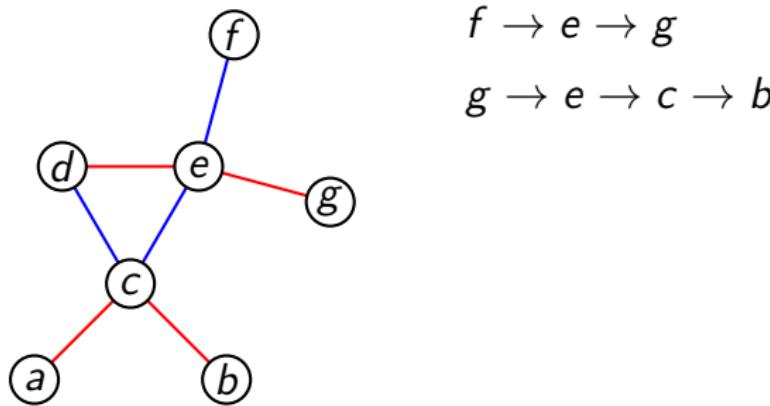
Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.



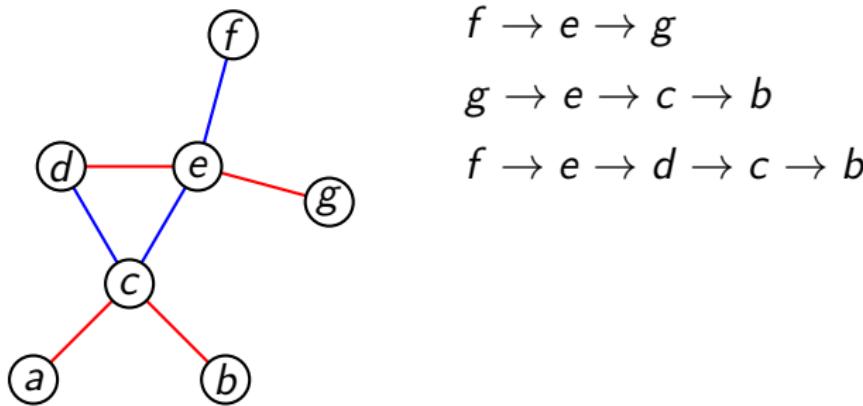
Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.



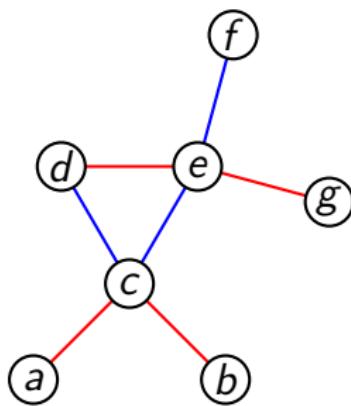
Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.



Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.



$f \rightarrow e \rightarrow g$

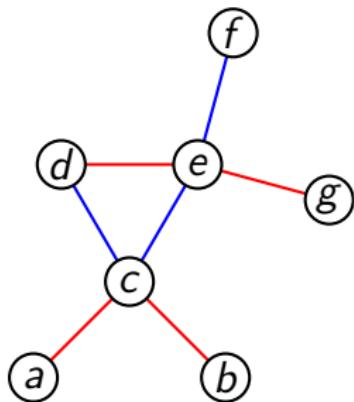
$g \rightarrow e \rightarrow c \rightarrow b$

$f \rightarrow e \rightarrow d \rightarrow c \rightarrow b$

$a \rightarrow c \rightarrow e \rightarrow d \rightarrow c \rightarrow b$

Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.



$f \rightarrow e \rightarrow g$

$g \rightarrow e \rightarrow c \rightarrow b$

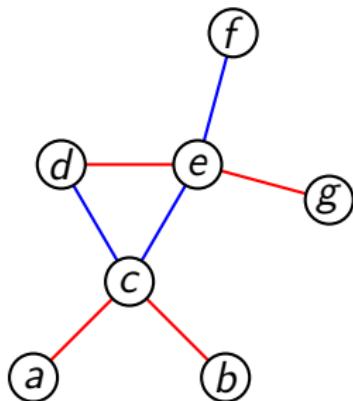
$f \rightarrow e \rightarrow d \rightarrow c \rightarrow b$

$a \rightarrow c \rightarrow e \rightarrow d \rightarrow c \rightarrow b$

No properly-coloured walk between g and d .

Proper connectivity

An edge-coloured graph $G_c = (V, E, c)$ is **properly-connected** if and only if there is a properly-coloured walk from every vertex to every other.



$f \rightarrow e \rightarrow g$

$g \rightarrow e \rightarrow c \rightarrow b$

$f \rightarrow e \rightarrow d \rightarrow c \rightarrow b$

$a \rightarrow c \rightarrow e \rightarrow d \rightarrow c \rightarrow b$

No properly-coloured walk between g and d .

Not properly-connected.

Connecting edge-colouring

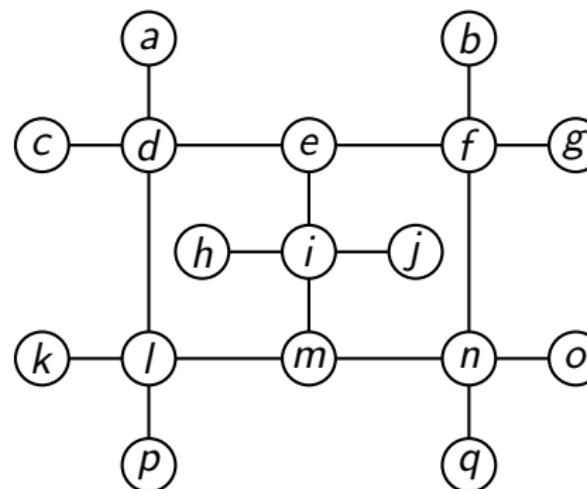
Let $G = (V, E)$ be a connected graph. A k -edge-colouring is **connecting** iff $G_c = (V, E, c)$ is properly-connected.

Proper-walk connection number: smallest k such that there exists a connecting k -edge-colouring of G ?

Connecting edge-colouring

Let $G = (V, E)$ be a connected graph. A k -edge-colouring is **connecting** iff $G_c = (V, E, c)$ is properly-connected.

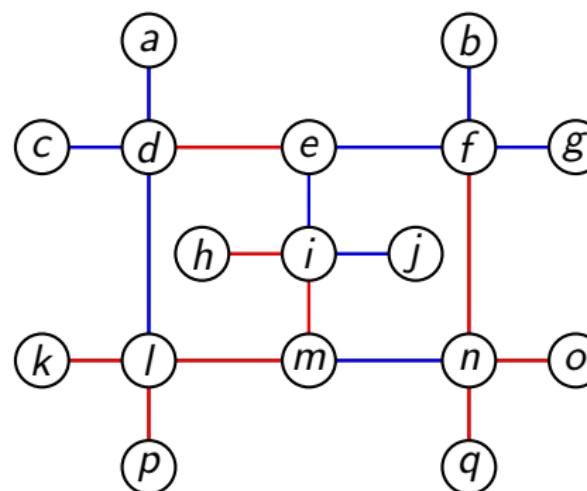
Proper-walk connection number: smallest k such that there exists a connecting k -edge-colouring of G ?



Connecting edge-colouring

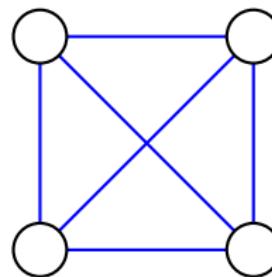
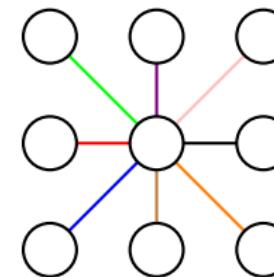
Let $G = (V, E)$ be a connected graph. A k -edge-colouring is **connecting** iff $G_c = (V, E, c)$ is properly-connected.

Proper-walk connection number: smallest k such that there exists a connecting k -edge-colouring of G ?



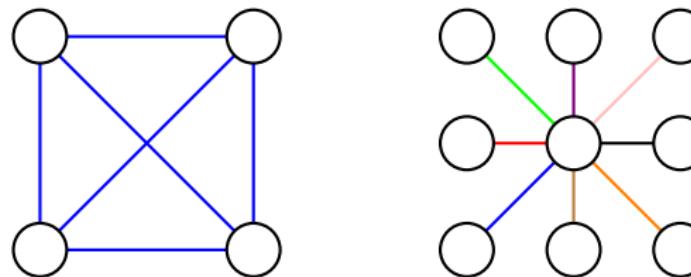
Trivial bounds

- We need between 1 and $n - 1$ colours.



Trivial bounds

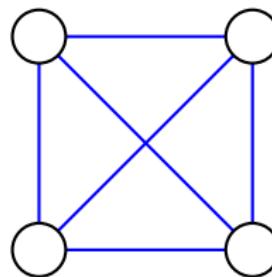
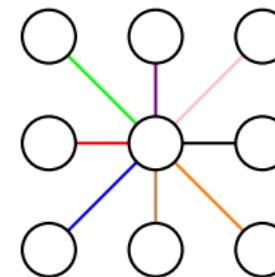
- We need between 1 and $n - 1$ colours.



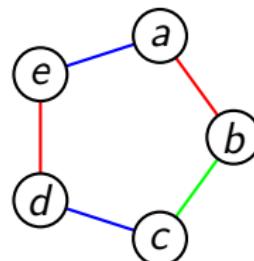
- The **chromatic index** of the graph is always enough.

Trivial bounds

- We need between 1 and $n - 1$ colours.

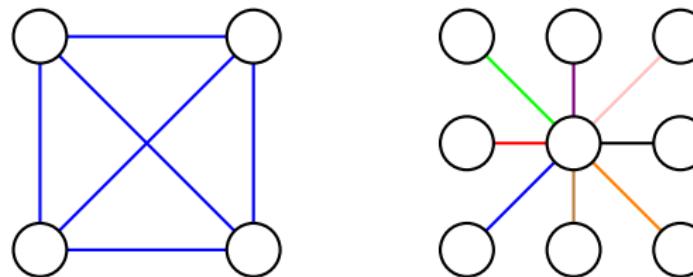


- The **chromatic index** of the graph is always enough.
But often unnecessary!

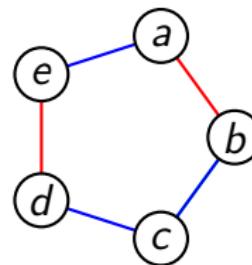


Trivial bounds

- We need between 1 and $n - 1$ colours.

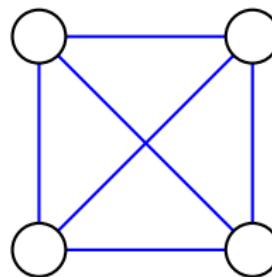
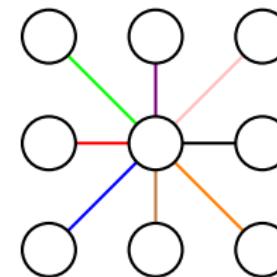


- The **chromatic index** of the graph is always enough.
But often unnecessary!

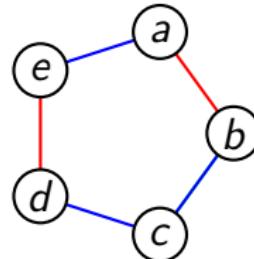
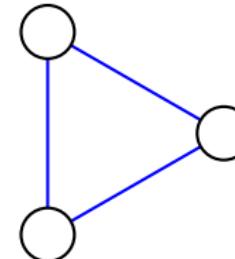


Trivial bounds

- We need between 1 and $n - 1$ colours.



- The **chromatic index** of the graph is always enough.
But often unnecessary!

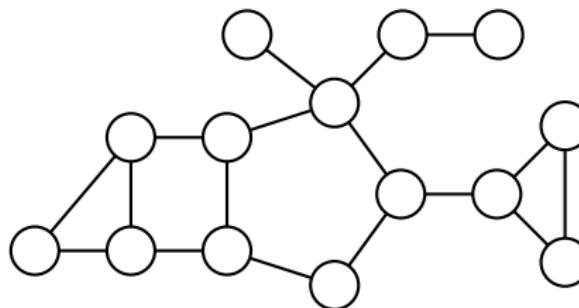


Connecting 3-edge-colouring

- If G is a tree, we need $\Delta(G)$ colours.

Connecting 3-edge-colouring

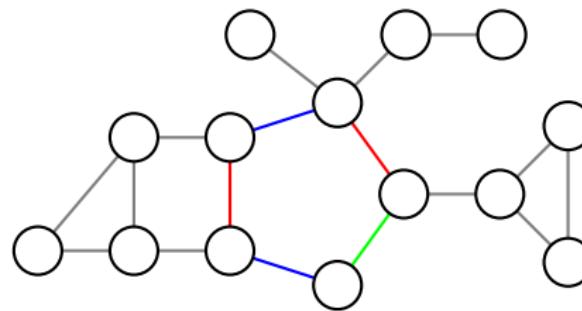
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle:



The cases $k \neq 2$

Connecting 3-edge-colouring

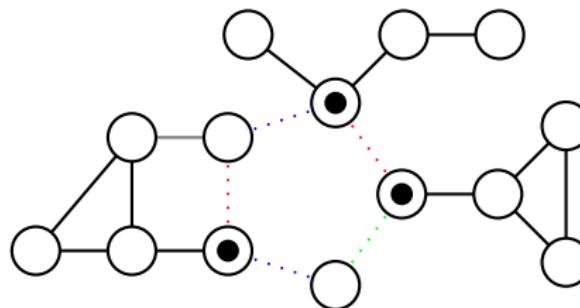
- If G is a tree, we need $\Delta(G)$ colours.
 - If G has a cycle:



The cases $k \neq 2$

Connecting 3-edge-colouring

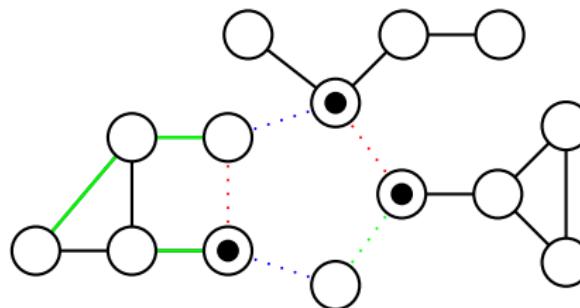
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle:



The cases $k \neq 2$

Connecting 3-edge-colouring

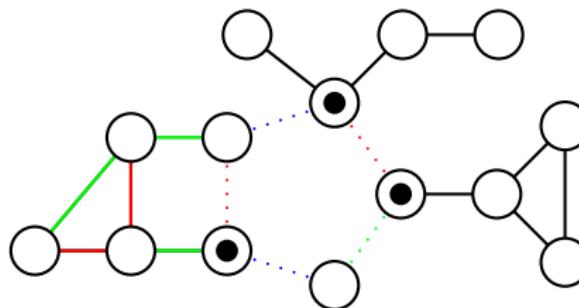
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle:



The cases $k \neq 2$

Connecting 3-edge-colouring

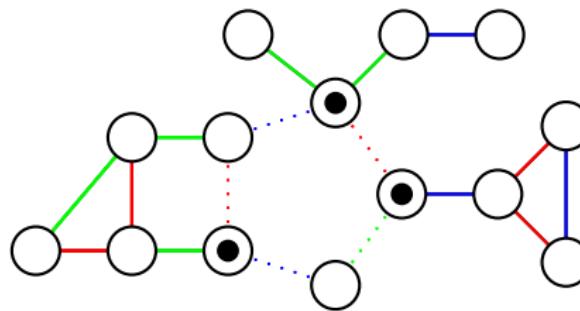
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle:



The cases $k \neq 2$

Connecting 3-edge-colouring

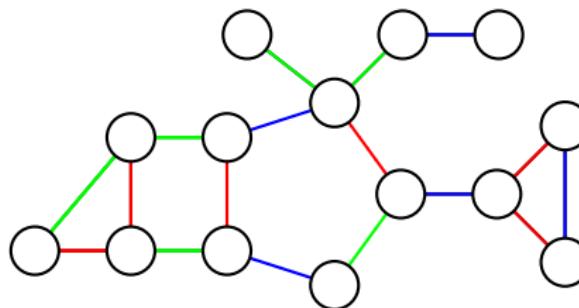
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle:



The cases $k \neq 2$

Connecting 3-edge-colouring

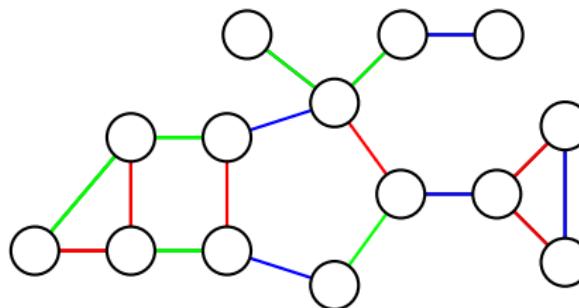
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle: 3 colours are always enough!



The cases $k \neq 2$

Connecting 3-edge-colouring

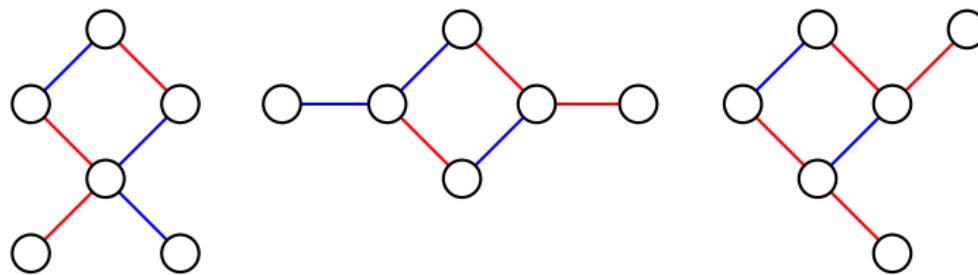
- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle: 3 colours are always enough!



The graph we can connect with $k \geq 3$ colours are all the graphs except the trees who have a vertex of degree $> k$.

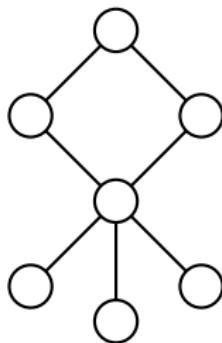
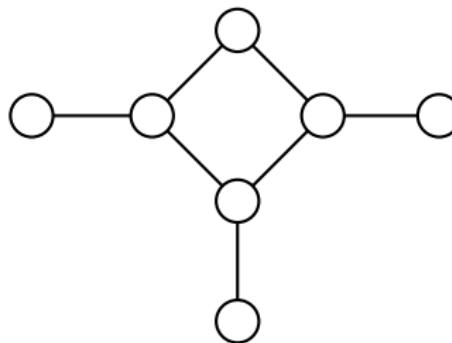
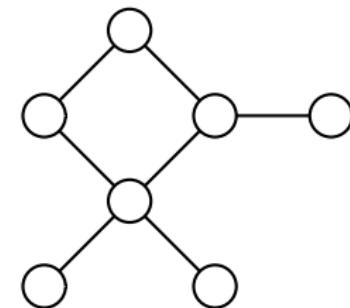
Bridges in bipartite graphs

All the paths between two vertices in a bipartite graph have same parity!



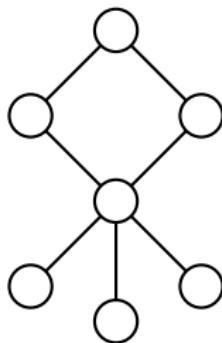
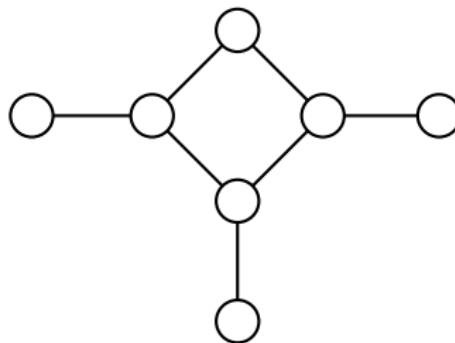
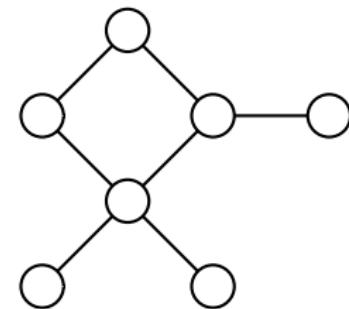
Bridges at even distance must have the different colours.
Bridges at odd distance must have the same colour.

Connectability of bipartite graphs



These graphs cannot be connected with two colours!

Connectability of bipartite graphs

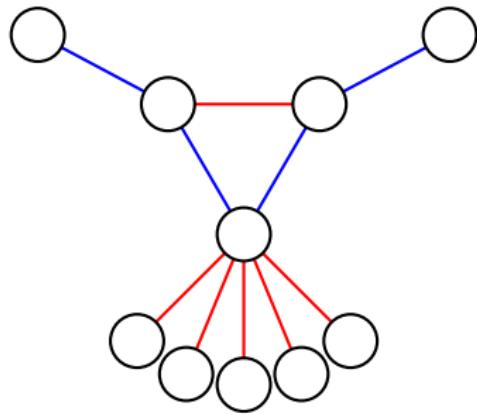


These graphs cannot be connected with two colours!

Theorem

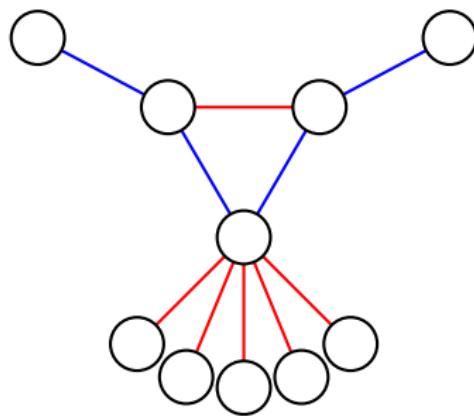
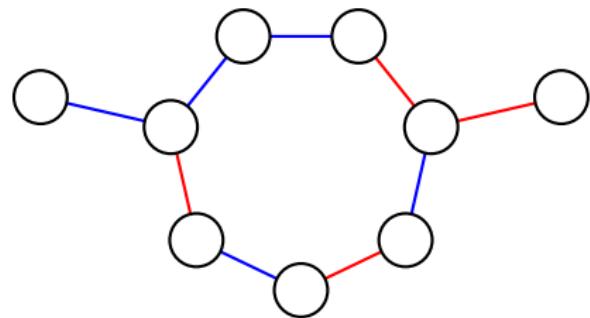
A bipartite graph G can be connected with two colours if and only if it can be made 2-edge-connected by adding at most one edge.

Can we generalize it?



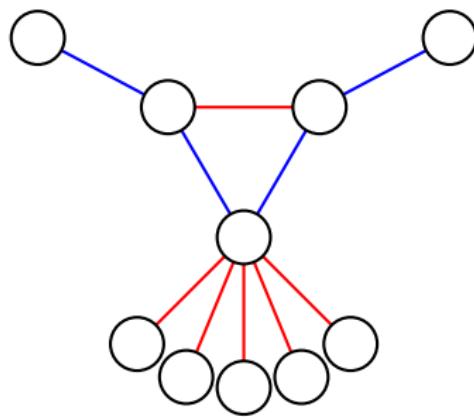
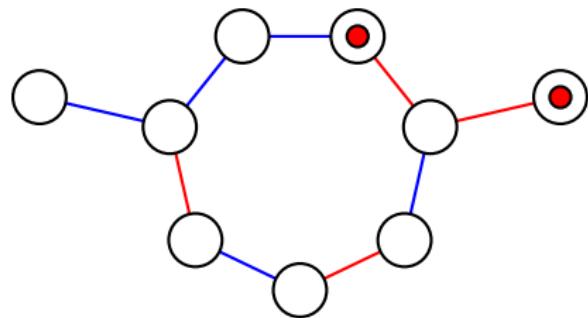
2-edge-colouring

Can we generalize it?



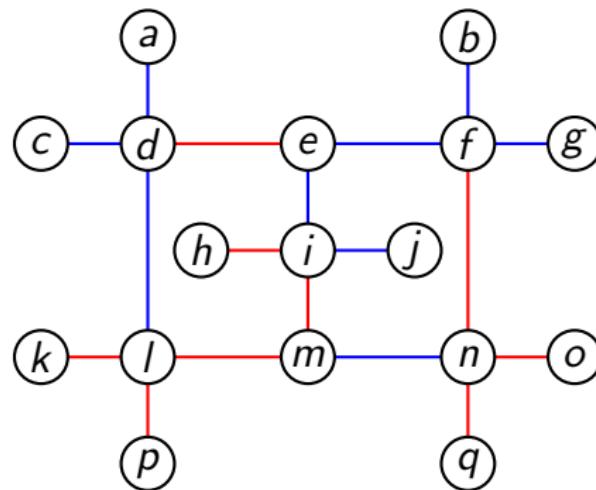
2-edge-colouring

Can we generalize it?



2-edge-colouring

The power of odd cycles



Stubborn edges

The set \mathcal{S} of **stubborn edges** is the set of the edges that belong to every odd cycle of the graph.

The \mathcal{S} -free components of the graph G are the connected components of $G \setminus \mathcal{S}$.

Theorem

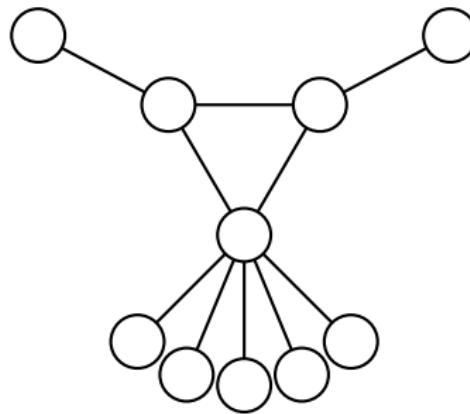
Let G be a non-bipartite 2-edge-coloured graph. Then, there exists an \mathcal{S} -free component \mathcal{K} of G such that there is no properly-coloured walk between two vertices $u, v \notin \mathcal{K}$ that goes through a vertex $w \in \mathcal{K}$.

Existence of connecting 2-edge-colourings

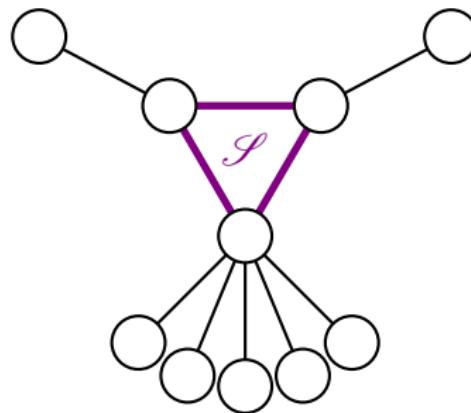
Theorem

A connected non-bipartite graph G can be connected with two colours if and only if there exists a \mathcal{S} -free component \mathcal{K} of G such that $G \setminus \mathcal{K}$ is empty or can be made 2-edge-connected by adding at most one edge.

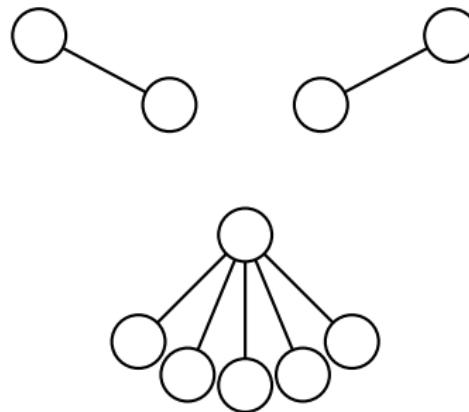
Example of connectable graph



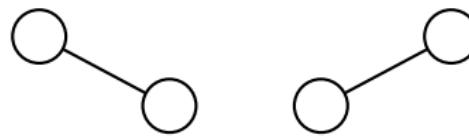
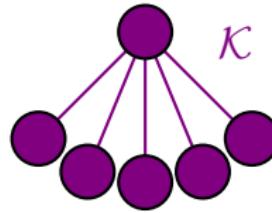
Example of connectable graph



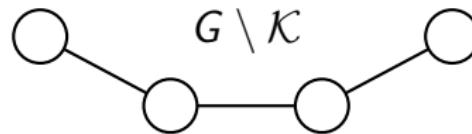
Example of connectable graph



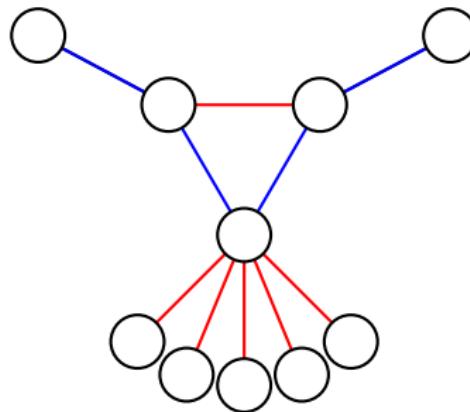
Example of connectable graph



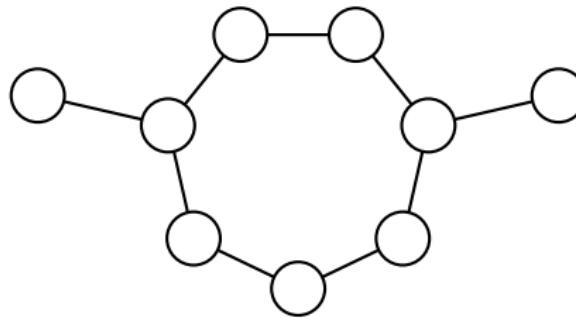
Example of connectable graph



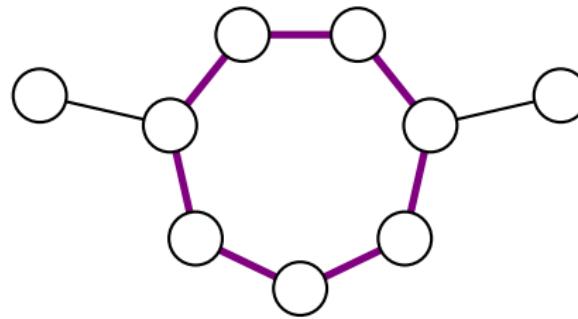
Example of connectable graph



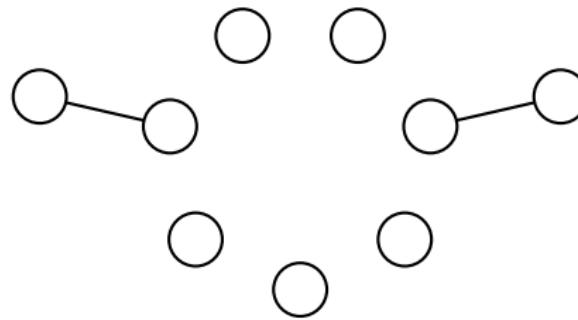
Example of non-connectable graph



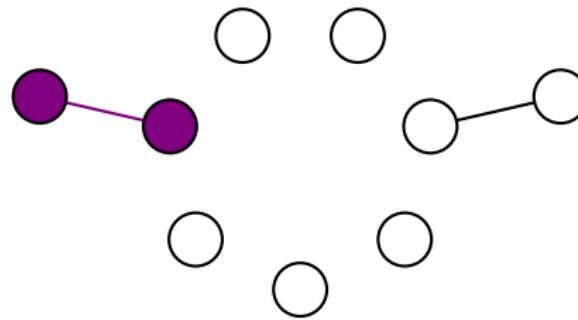
Example of non-connectable graph



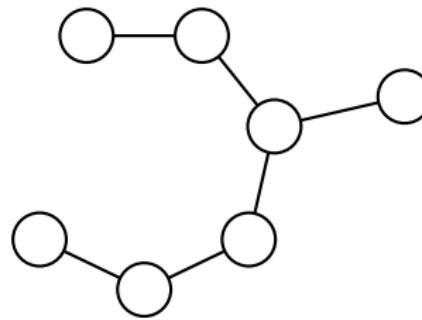
Example of non-connectable graph



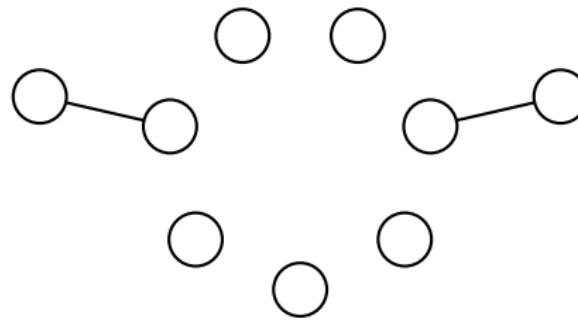
Example of non-connectable graph



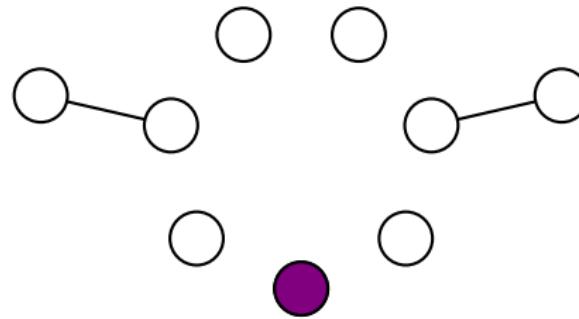
Example of non-connectable graph



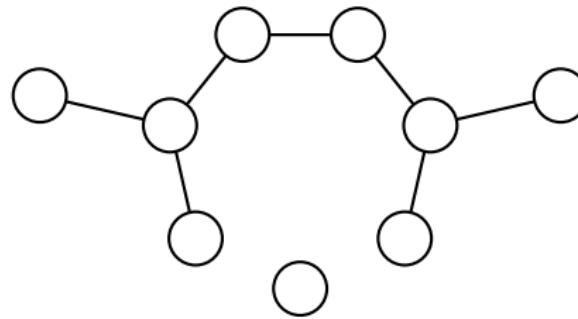
Example of non-connectable graph



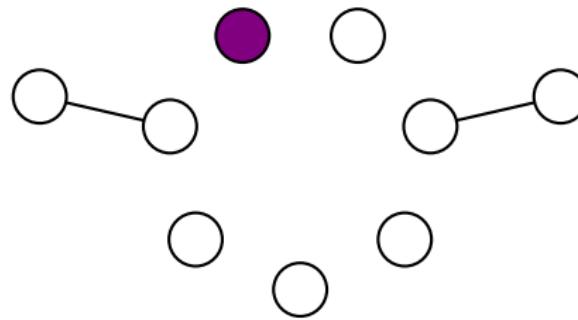
Example of non-connectable graph



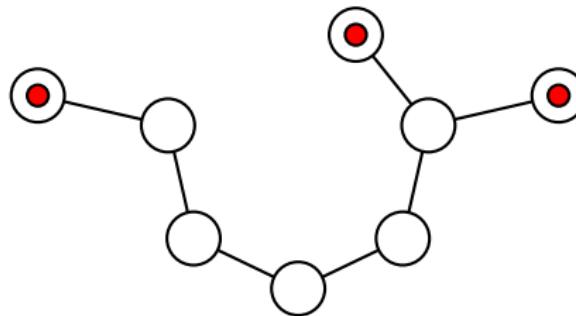
Example of non-connectable graph



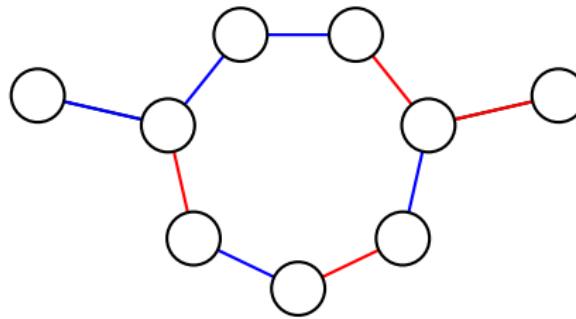
Example of non-connectable graph



Example of non-connectable graph



Example of non-connectable graph



Putting everything together

The minimum number of colours required for a connecting edge-colouring of a graph G is:

- 1 if G is complete;
- its maximum degree $\Delta(G)$ if G is a tree;
- 2 if G is bipartite and can be made 2-edge-connected by adding at most one edge;
- 2 if G is non-bipartite and contains an \mathcal{S} -free component \mathcal{K} such that $G \setminus \mathcal{K}$ is empty or can be made 2-edge-connected by adding at most one edge;
- 3 otherwise

In every case, we can find an optimal connecting colouring in polynomial time.

Ideas for future work

- Stronger definitions of connectivity (cycles? spanning closed walk?)
- Connecting with trails or paths instead of walks?
- Stretch of the edge-colouring?
- Extension of partial edge-colouring?
- Study of directed graphs?

Thank you!