

The smallest 5-chromatic tournament

THOMAS BELLITTO

Wednesday July 06, 2022

Sorbonne Université, LIP6, Paris, France

Joint work with

Nicolas Bousquet, Université Lyon 1, LIRIS, France

Adam Kabela, University of West Bohemia, Pilsen, Czech Republic

Théo Pierron, Université Lyon 1, LIRIS, France

1 Introduction

2 Our results

- Tournaments on 12 vertices
- Tournaments on 17 vertices
- Tournaments on 18 vertices
- Tournaments on 19 vertices

Directed coloring

Chromatic number

The chromatic number of a graph G is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains an edge.

Directed coloring

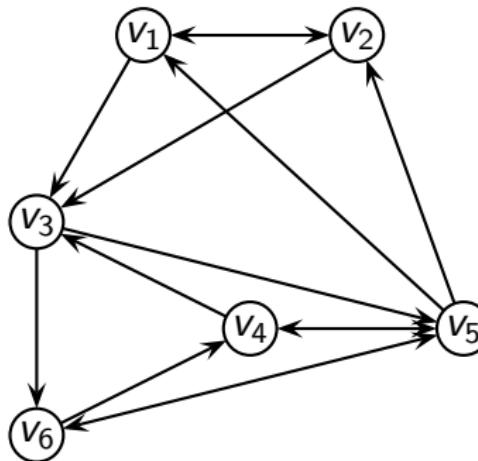
Directed chromatic number (Neumann-Lara, 1982)

The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.

Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

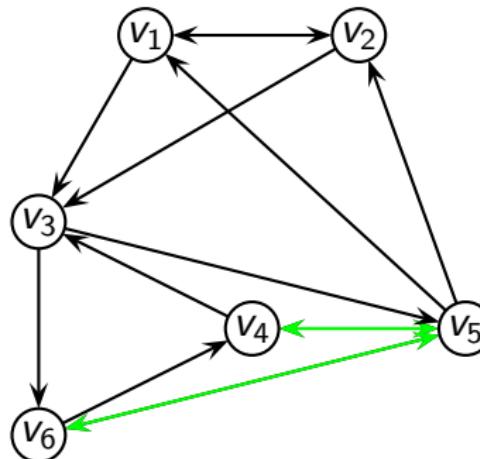
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

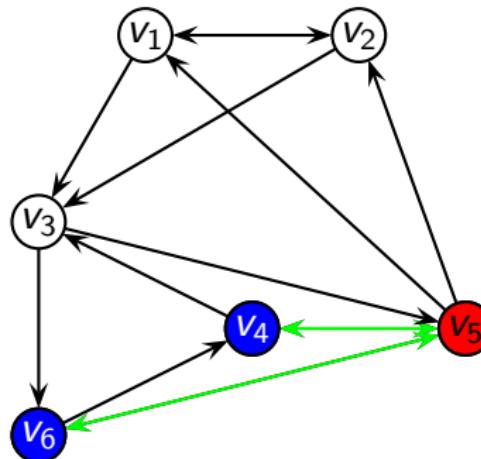
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

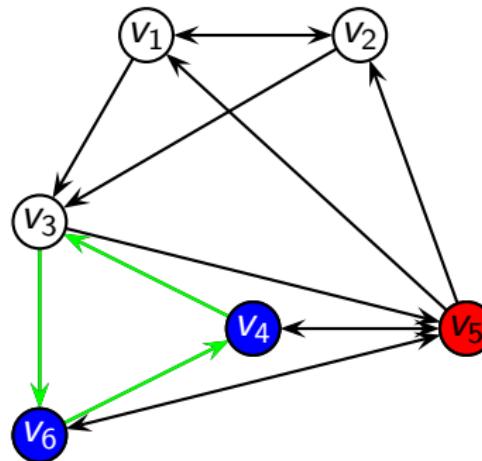
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

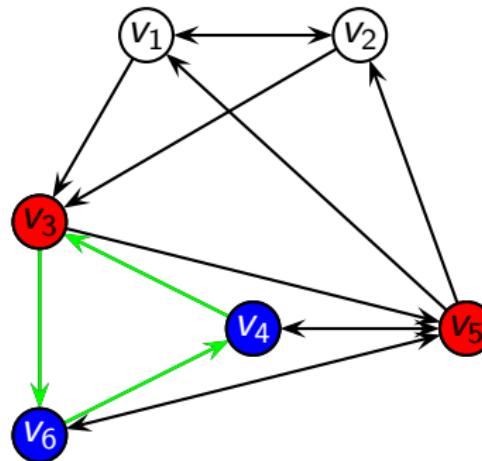
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

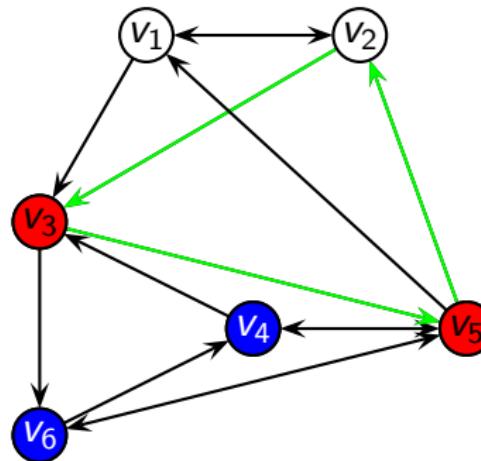
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

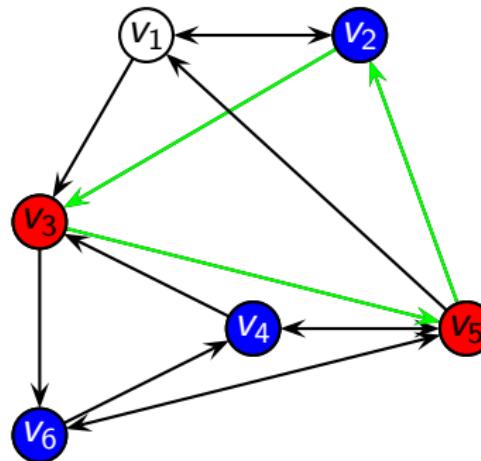
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

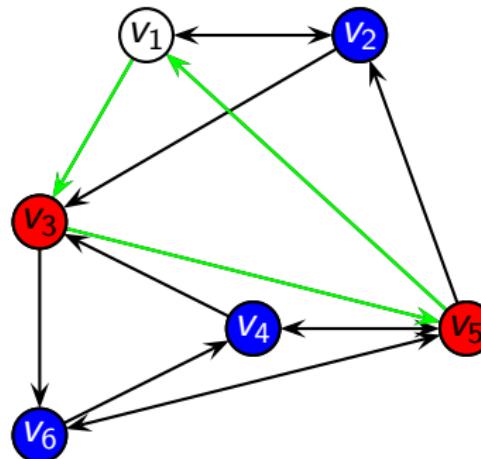
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

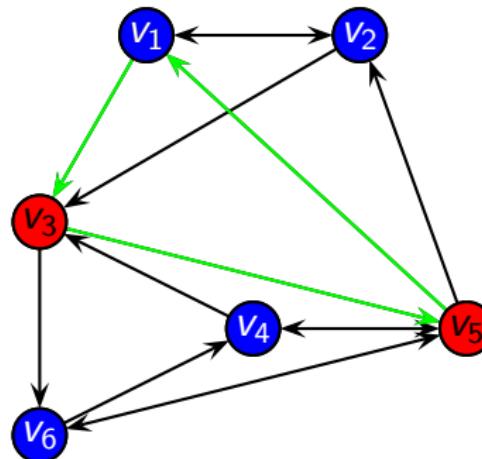
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

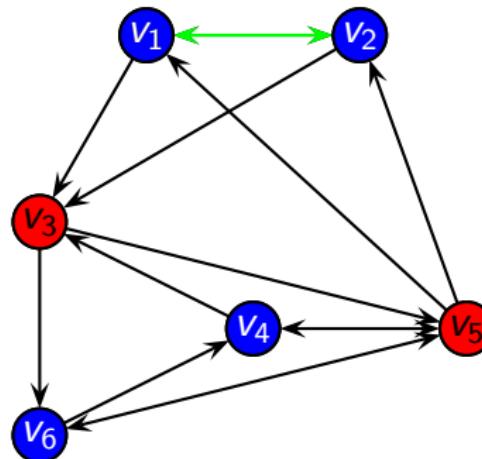
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

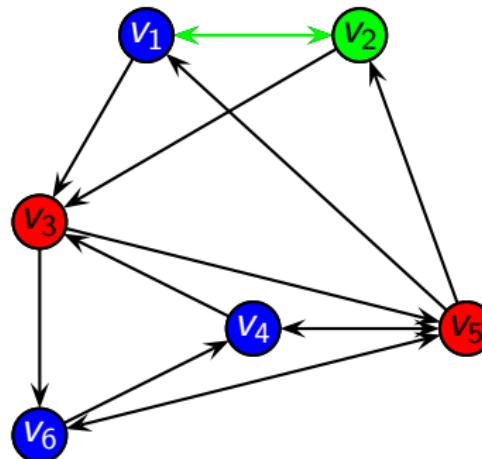
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

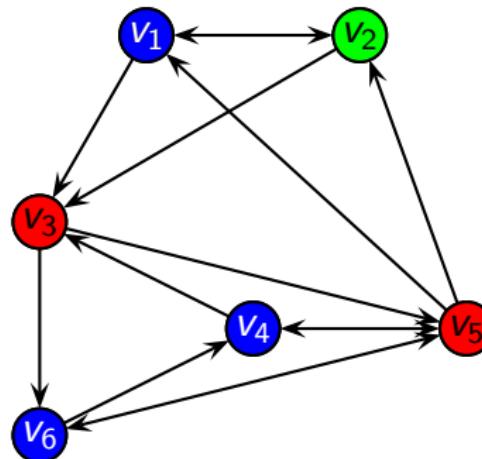
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



A few definitions

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

A few definitions

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

An tournament is a directed graph such that for every pair of vertices u, v , there is exactly one arc between u and v .

A few definitions

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

An tournament is a directed graph such that for every pair of vertices u, v , there is **exactly one** arc between u and v .

A tournament is **transitive** iff for every arc uv and vw , there exists an arc uw .

A few definitions

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

An tournament is a directed graph such that for every pair of vertices u, v , there is **exactly one** arc between u and v .

A tournament is **transitive** iff for every arc uv and vw , there exists an arc uw .

Transitive tournament = Acyclic tournament

Proper coloring of a tournament = partition into transitive subtournaments

Our problem

Neumann-Lara

What is the size n_k of the smallest oriented graph of chromatic number k ?

Our problem

Neumann-Lara

What is the size n_k of the smallest oriented graph of chromatic number k ?

- Can be restricted to tournaments.

Our problem

Neumann-Lara

What is the size n_k of the smallest oriented graph of chromatic number k ?

- Can be restricted to tournaments.
- Oriented graphs are important to understand directed coloring, many problem study them. (cf next talk by Clément Rambaud about the smallest number of edges in 3-critical oriented graph)

Our problem

Neumann-Lara

What is the size n_k of the smallest oriented graph of chromatic number k ?

- Can be restricted to tournaments.
- Oriented graphs are important to understand directed coloring, many problem study them. (cf next talk by Clément Rambaud about the smallest number of edges in 3-critical oriented graph)
- Numerous works about the size of the smallest undirected triangle-free graph of chromatic number k (open for $k \geq 6$).

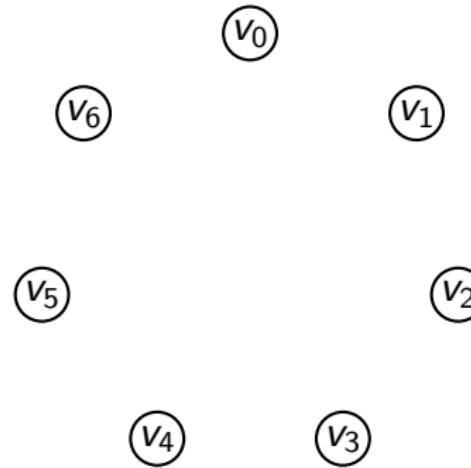
Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square $\pmod n$.

Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

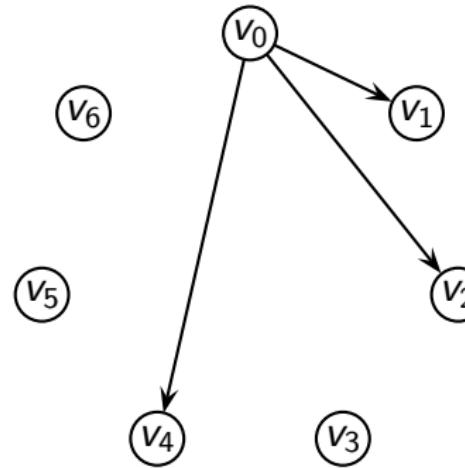
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

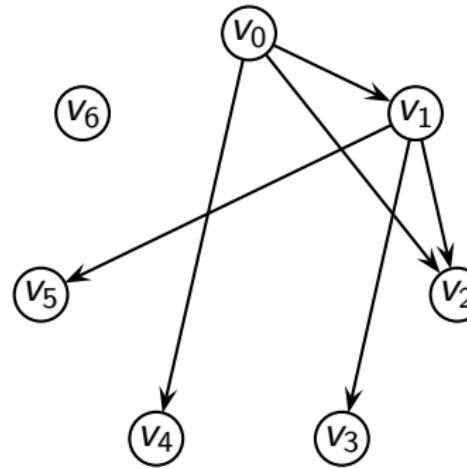
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

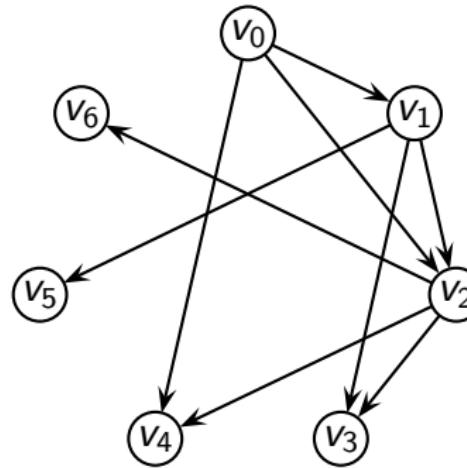
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

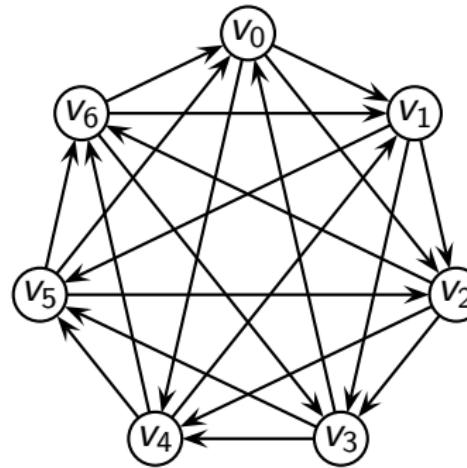
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

Example: the squares modulo 7 are 1, 4 and 2.



State of the art

- The smallest tournament of chromatic number 2 is the cycle of $n_2 = 3$ vertices.

State of the art

- The smallest tournament of chromatic number 2 is the cycle of $n_2 = 3$ vertices.
- Neumann-Lara, 1994: $n_3 = 7$.
There are 4 such tournaments including P_7 (no TT_4).

State of the art

- The smallest tournament of chromatic number 2 is the cycle of $n_2 = 3$ vertices.
- Neumann-Lara, 1994: $n_3 = 7$.
There are 4 such tournaments including P_7 (no TT_4).
- Neumann-Lara, 1994: $n_4 = 11$.
The only such tournament is P_{11} .

State of the art

- The smallest tournament of chromatic number 2 is the cycle of $n_2 = 3$ vertices.
- Neumann-Lara, 1994: $n_3 = 7$.
There are 4 such tournaments including P_7 (no TT_4).
- Neumann-Lara, 1994: $n_4 = 11$.
The only such tournament is P_{11} .
- Erdős, 1979: maximum dichromatic number of a tournament on n vertices is $\Theta(\frac{n}{\log n})$.
- Neumann-Lara, proof not given: $17 \leq n_5 \leq 19$.
But P_{19} has chromatic number 4.
Conjecture (Neumann-Lara, 1994): $n_5 = 17$.

Can we brute force it?

Up to isomorphisms, there are

- 244912778438520759443245824 (27 digits) tournaments on 17 vertices;
- 1783398846284777975419600287232 (31 digits) tournaments on 18 vertices;
- 24605641171260376770598003978281472 (35 digits) tournaments on 19 vertices.

Enumerating them up to isomorphisms is difficult.

We have to solve an NP-complete problem on each of them.

Our results

Lemma

Every 4-chromatic tournament on 12 vertices contains P_{11} .

Our results

Lemma

Every 4-chromatic tournament on 12 vertices contains P_{11} .

Theorem

There is no 5-chromatic tournament on 17 vertices.

Our results

Lemma

Every 4-chromatic tournament on 12 vertices contains P_{11} .

Theorem

There is no 5-chromatic tournament on 17 vertices.

Theorem

There is no 5-chromatic tournament on 18 vertices.

Our results

Lemma

Every 4-chromatic tournament on 12 vertices contains P_{11} .

Theorem

There is no 5-chromatic tournament on 17 vertices.

Theorem

There is no 5-chromatic tournament on 18 vertices.

Theorem

There is a 5-chromatic tournament on 19 vertices.

1 Introduction

2 Our results

- Tournaments on 12 vertices
- Tournaments on 17 vertices
- Tournaments on 18 vertices
- Tournaments on 19 vertices

Structure

Theorem (Sanchez-Flores, 1998)

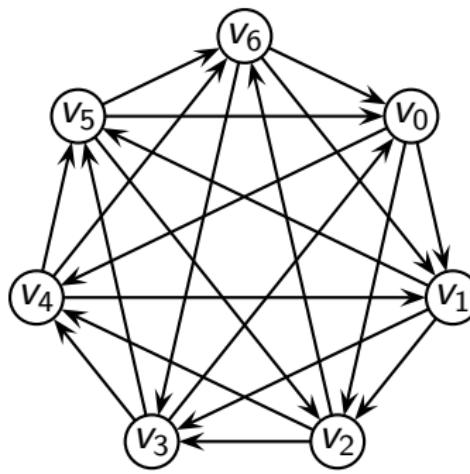
There is a unique tournament on 12 vertices that does not contain a TT_5 and it is 3-chromatic.

Consequence

In every 4-chromatic tournament on 12 vertices, there is a TT_5 whose removal yields one of the four 3-chromatic tournaments on 7 vertices.

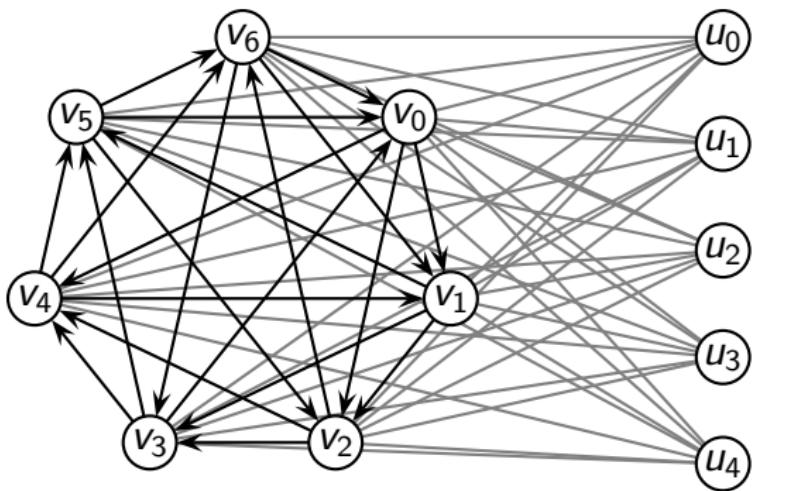
Tournaments on 12 vertices

Method

 P_7  TT_5

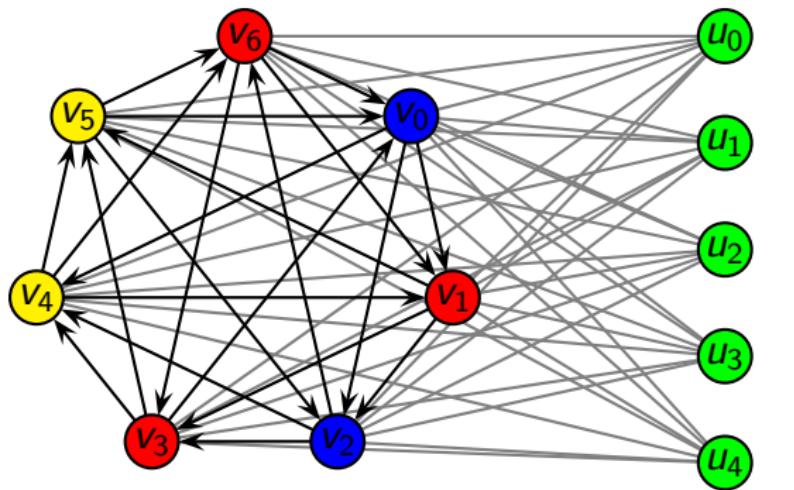
Tournaments on 12 vertices

Method

 P_7 TT_5 

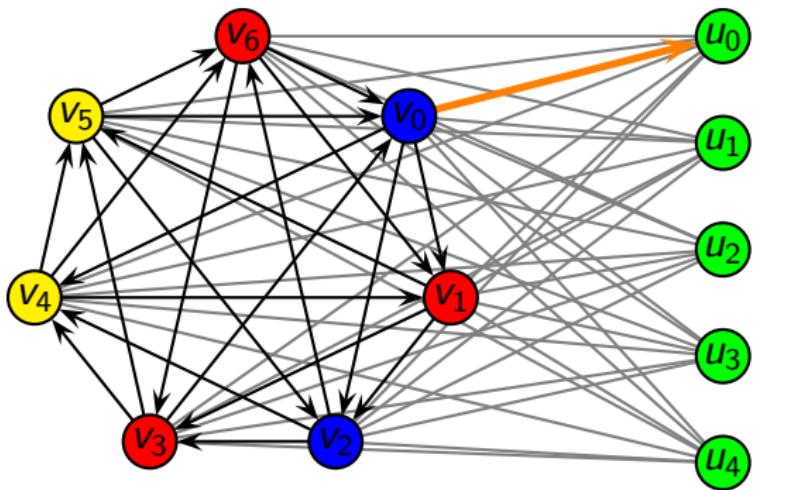
Tournaments on 12 vertices

Method

 P_7 TT_5 

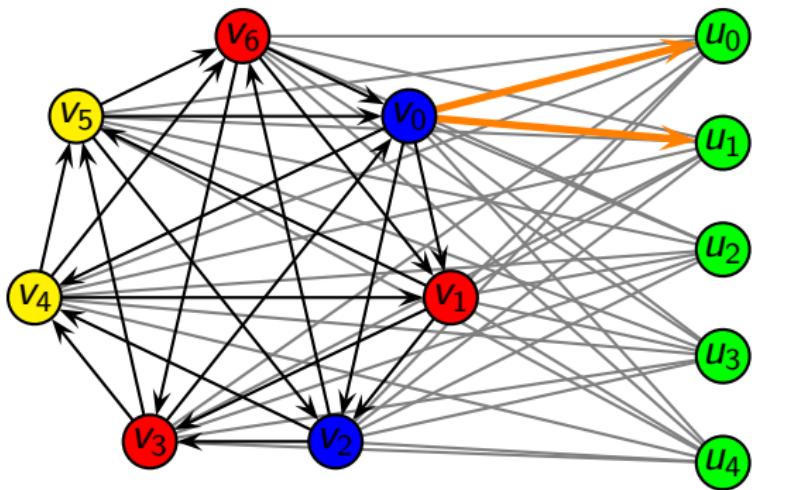
Tournaments on 12 vertices

Method

 P_7 TT_5 

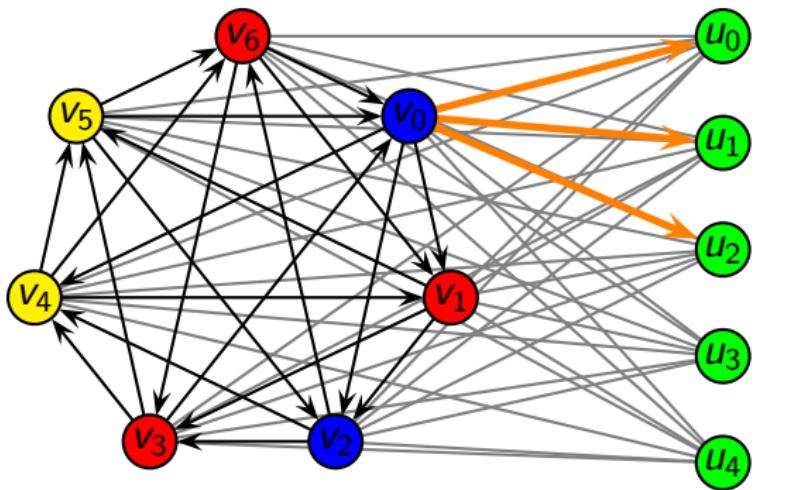
Tournaments on 12 vertices

Method

 P_7 TT_5 

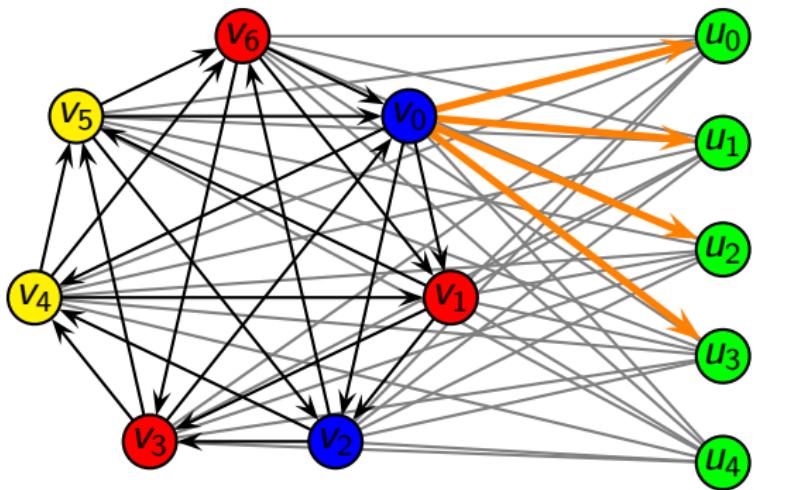
Tournaments on 12 vertices

Method

 P_7 TT_5 

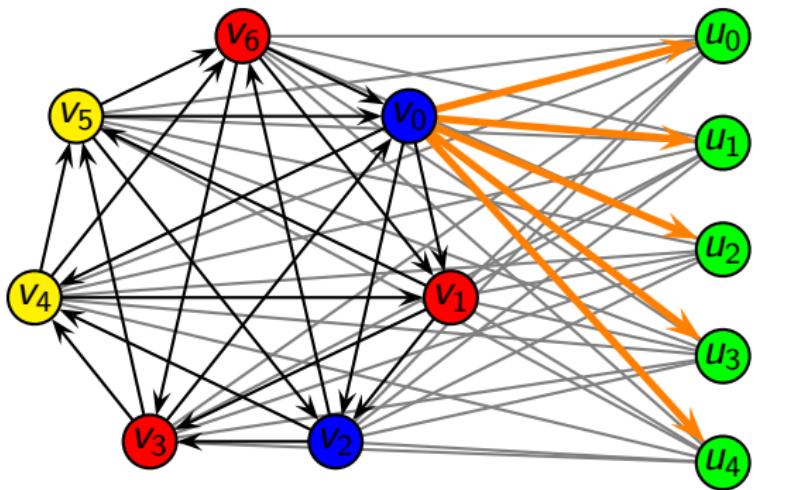
Tournaments on 12 vertices

Method

 P_7 TT_5 

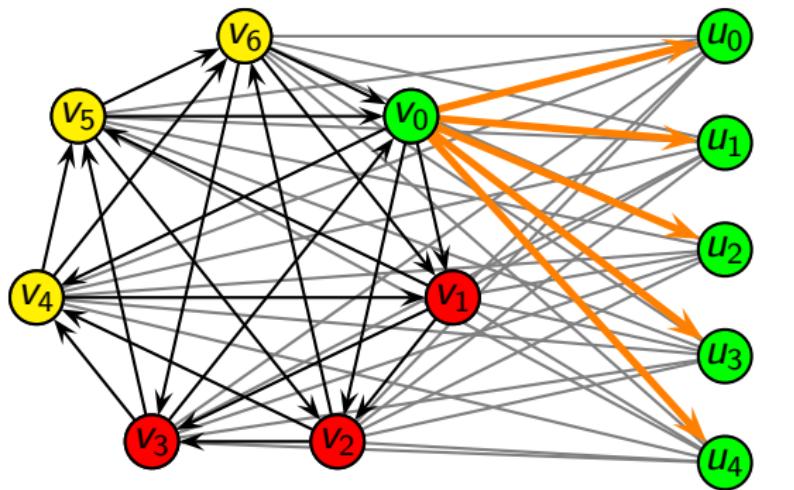
Tournaments on 12 vertices

Method

 P_7 TT_5 

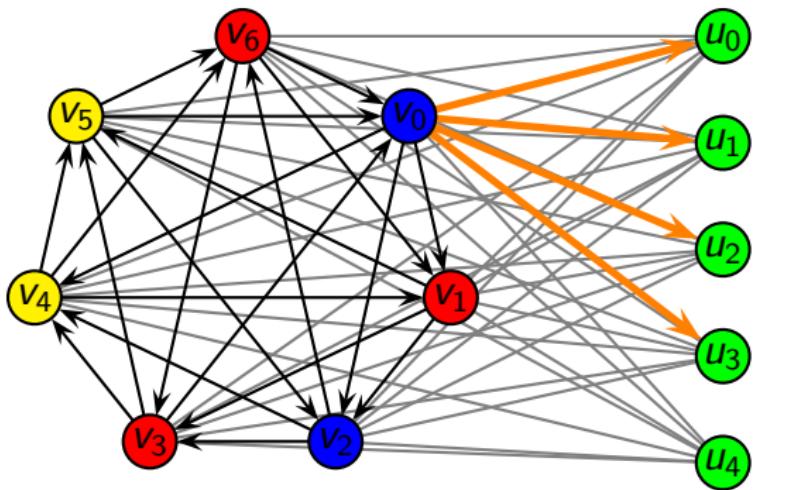
Tournaments on 12 vertices

Method

 P_7 TT_5 

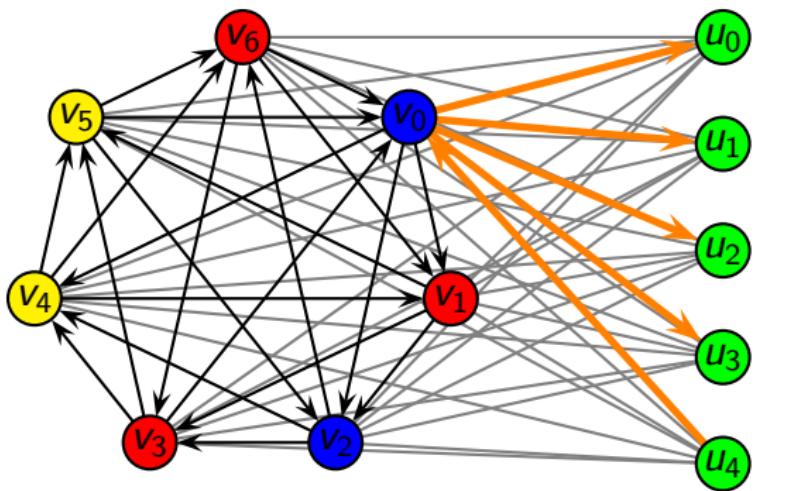
Tournaments on 12 vertices

Method

 P_7 TT_5 

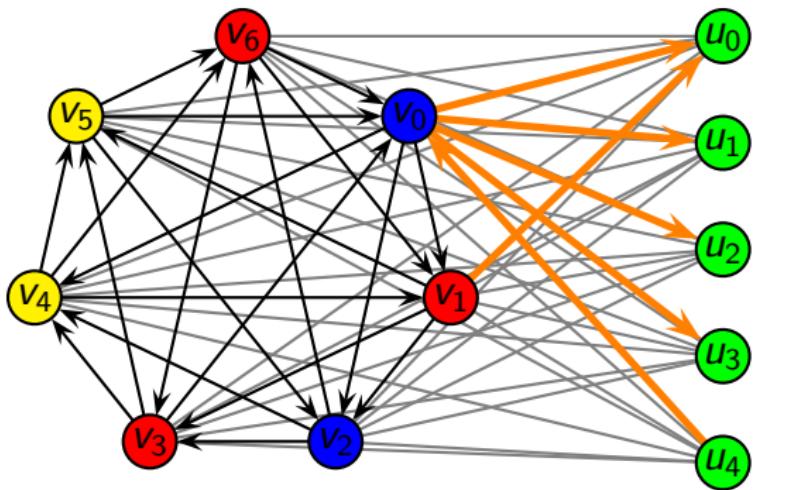
Tournaments on 12 vertices

Method

 P_7 TT_5 

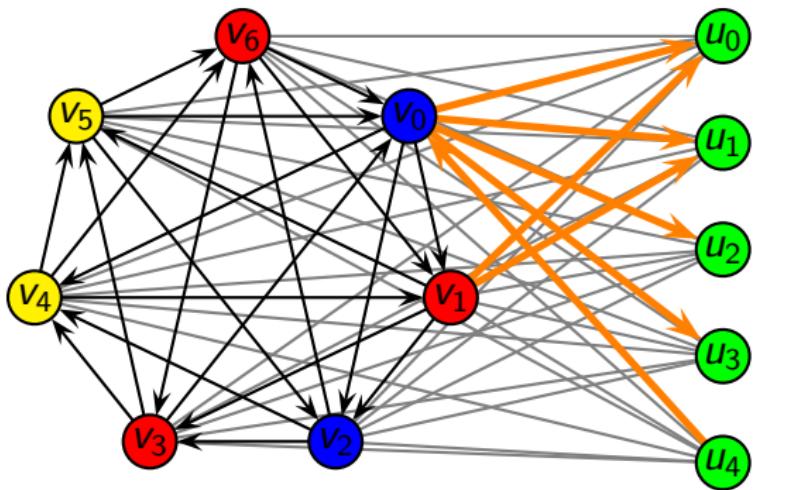
Tournaments on 12 vertices

Method

 P_7 TT_5 

Tournaments on 12 vertices

Method

 P_7 TT_5 

Results

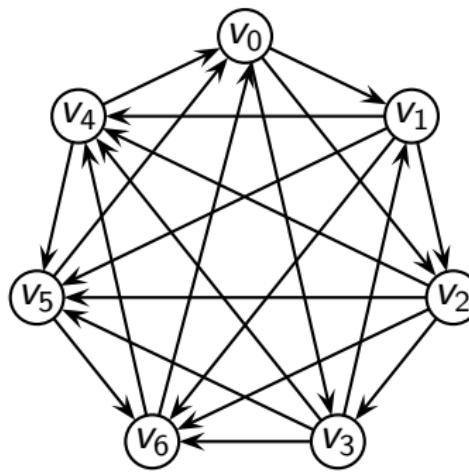
Theorem (Bellitto, Bousquet, Kabela, Pierron)

Every 4-chromatic tournament on 12 vertices :

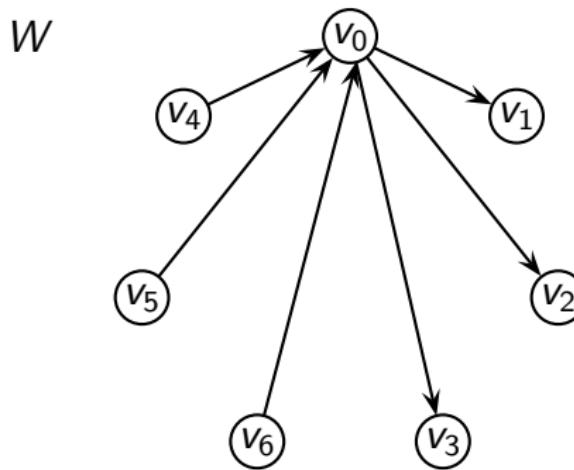
- contains P_{11} ;
- is a junction of TT_5 and W_1 (the 3-chromatic 7-vertex tournament contained by P_{11}).

There are 3-chromatic tournaments on 8 vertices that do not contain any 3-chromatic tournaments on 7 vertices.

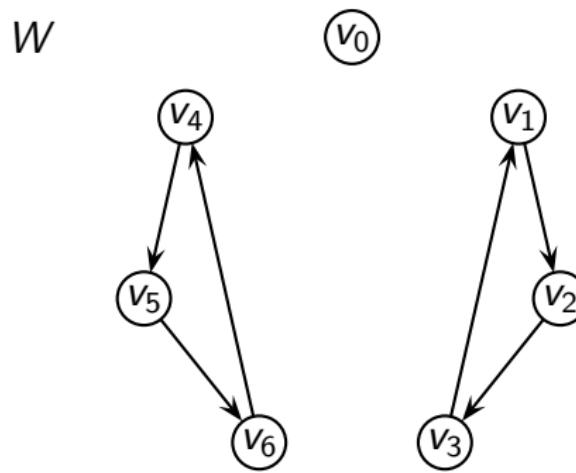
Tournaments on 12 vertices

 W_1 W 

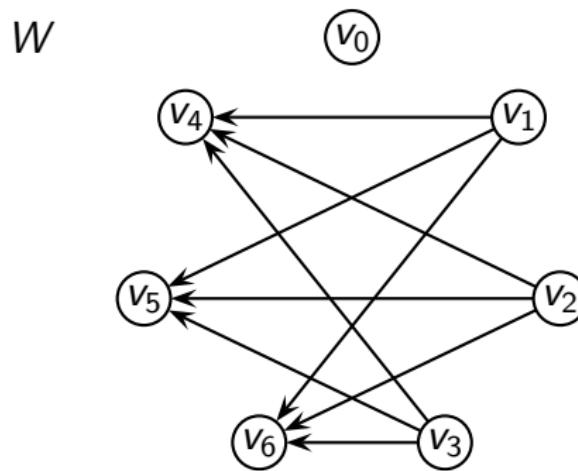
Tournaments on 12 vertices

 W_1 

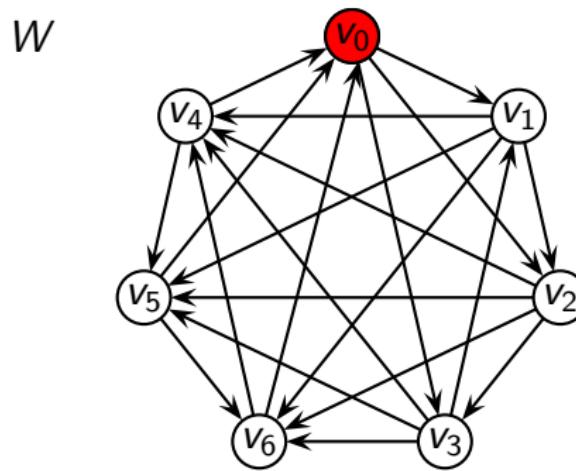
Tournaments on 12 vertices

 W_1 

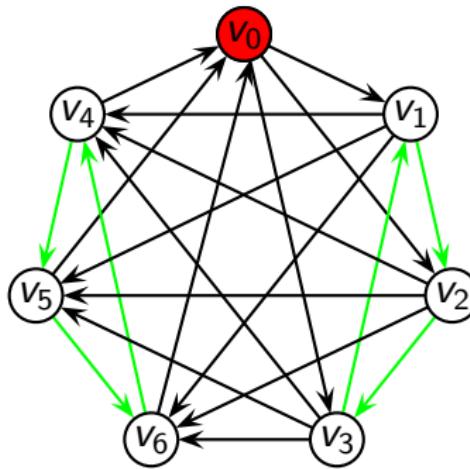
Tournaments on 12 vertices

 W_1 

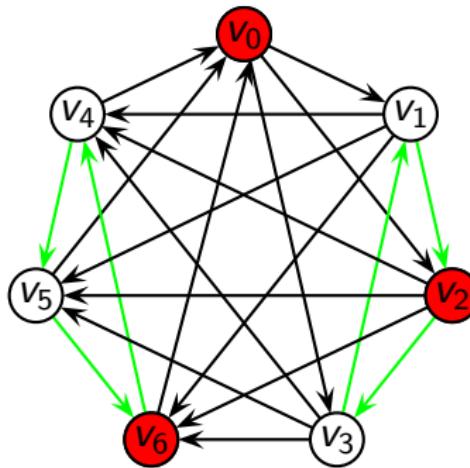
Tournaments on 12 vertices

 W_1 

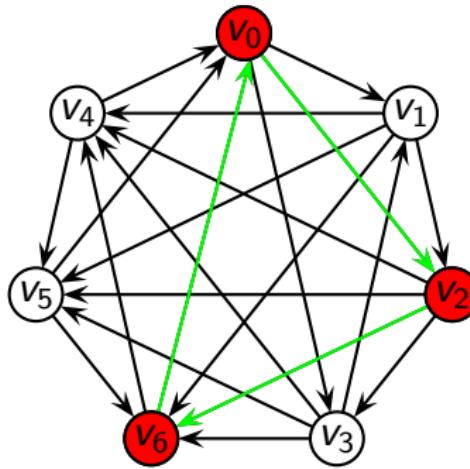
Tournaments on 12 vertices

 W_1 W 

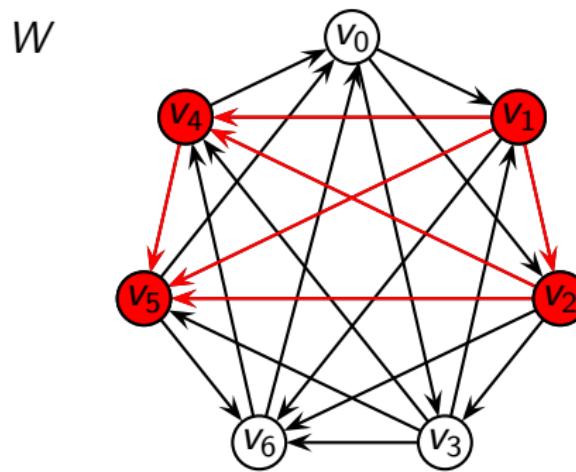
Tournaments on 12 vertices

 W_1 W 

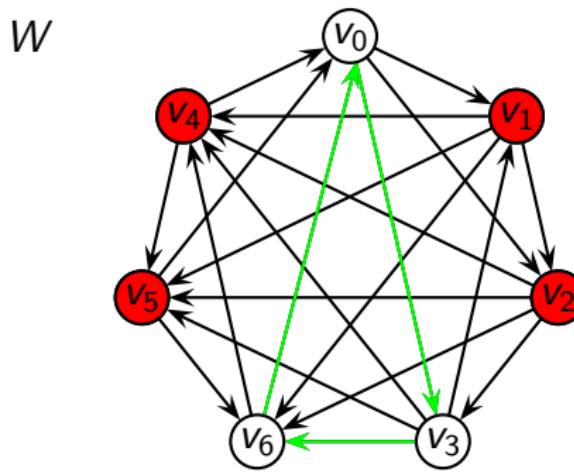
Tournaments on 12 vertices

 W_1 W 

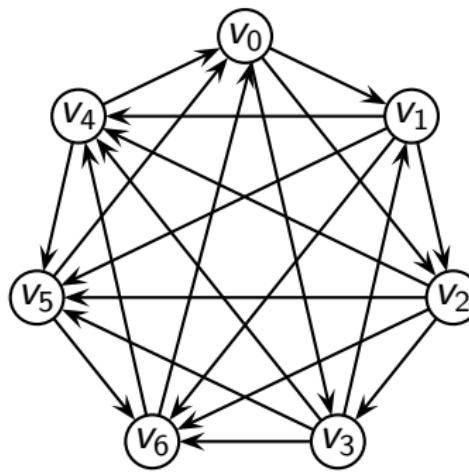
Tournaments on 12 vertices

 W_1 

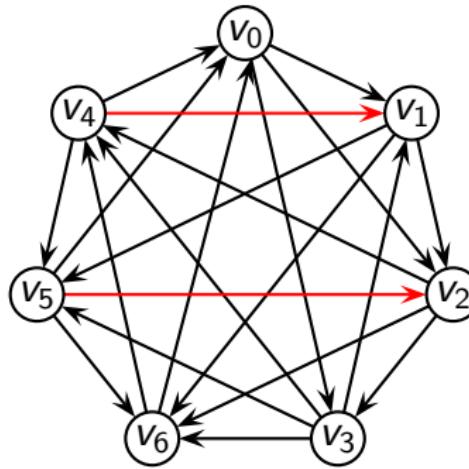
Tournaments on 12 vertices

 W_1 

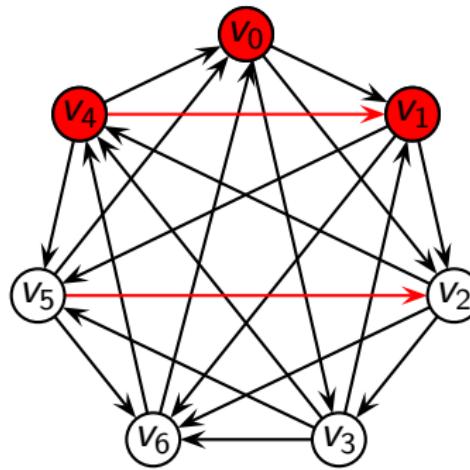
Tournaments on 12 vertices

 W_1 W 

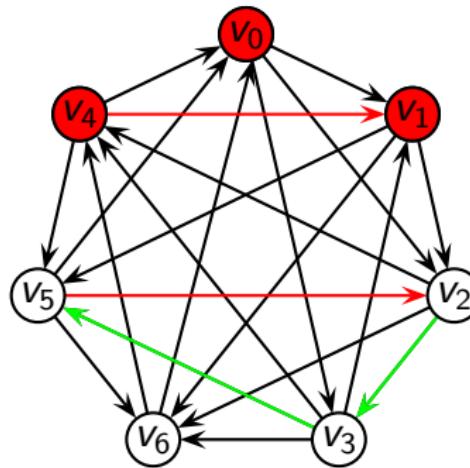
Tournaments on 12 vertices

 W_1 W_1 

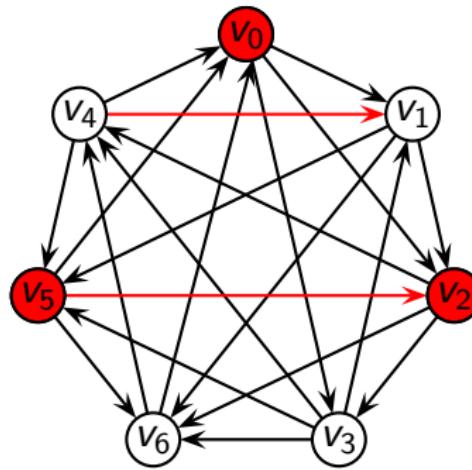
Tournaments on 12 vertices

 W_1 W_1 

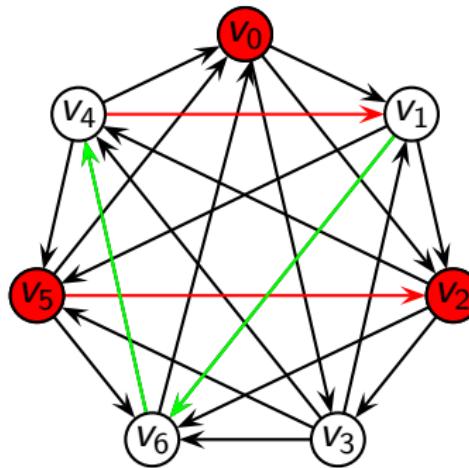
Tournaments on 12 vertices

 W_1 W_1 

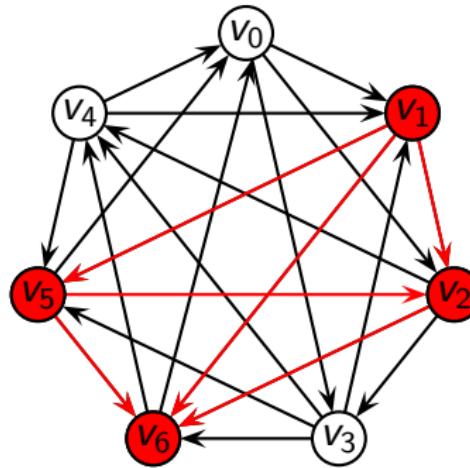
Tournaments on 12 vertices

 W_1 W_1 

Tournaments on 12 vertices

 W_1 W_1 

Tournaments on 12 vertices

 W_1 W_1 

Consequences

Critical graph

A graph is *k-critical* iff its chromatic number is k but drops to $k - 1$ if you remove any vertex or arc.

It is *k-vertex-critical* iff its chromatic number drops to $k - 1$ if you remove a vertex.

Consequences

Critical graph

A graph is *k-critical* iff its chromatic number is k but drops to $k - 1$ if you remove any vertex or arc.

It is *k-vertex-critical* iff its chromatic number drops to $k - 1$ if you remove a vertex.

Theorem (Aboulker, Bellitto, Havet, Rambaud)

For every k , there exists p_k such that there exists a k -critical oriented graph with n vertices for every $n \geq p_k$.

Consequences

Critical graph

A graph is *k-critical* iff its chromatic number is k but drops to $k - 1$ if you remove any vertex or arc.

It is *k-vertex-critical* iff its chromatic number drops to $k - 1$ if you remove a vertex.

Theorem (Aboulker, Bellitto, Havet, Rambaud)

For every k , there exists p_k such that there exists a k -critical oriented graph with n vertices for every $n \geq p_k$.

Theorem (Aboulker, Bellitto, Havet, Rambaud)

There is no 4-critical oriented graph on 12 vertices.

$$p_k \neq n_k$$

Outline of the proof

Structure of the graph

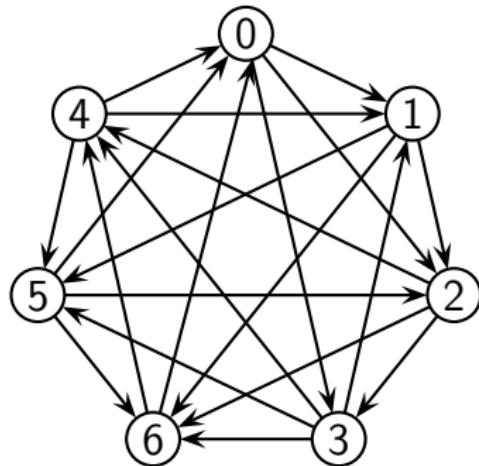
If T is a 5-chromatic tournament on 17 vertices, then we can partition its vertices into A_1 , A_2 and B such that

- A_1 and A_2 induce two copies of TT_5
- B induces a copy of W_1

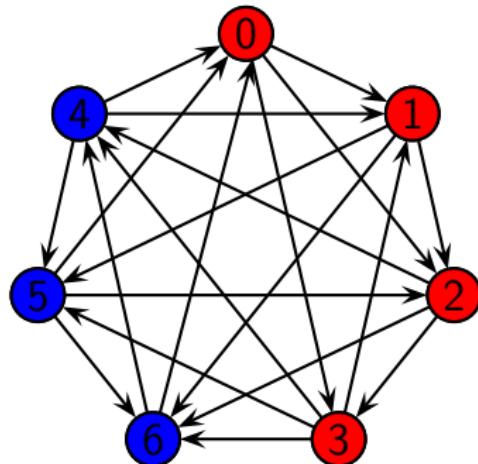
But...

One can always partition B into B_1 and B_2 such that the tournaments induced by $A_1 \cup B_1$ and $A_2 \cup B_2$ are 2-colorable.

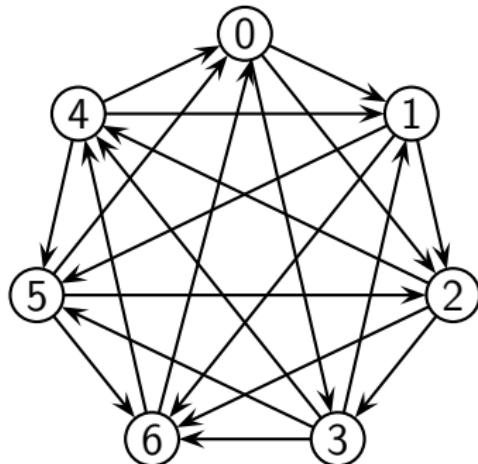
Tournaments on 17 vertices



- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.

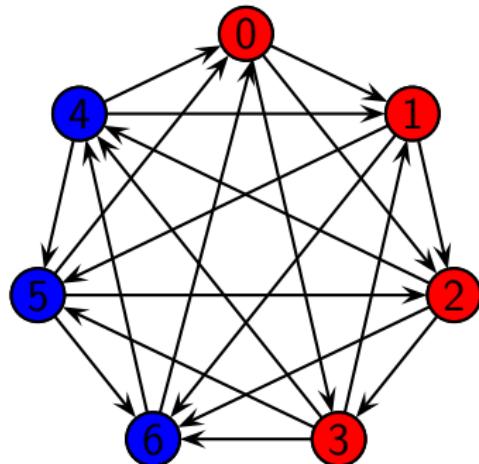


- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2 A_1$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2 A_2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.



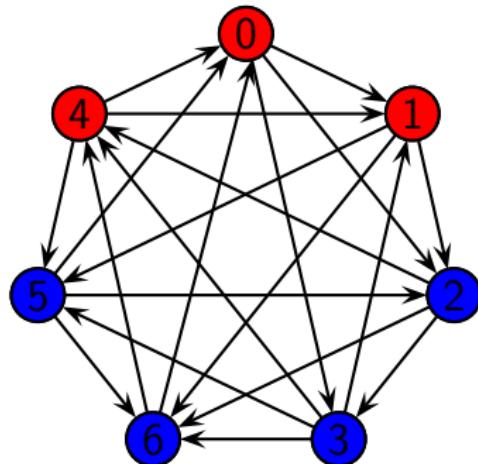
- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ $\textcolor{red}{A_1}$ $\textcolor{blue}{A_2}$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.

Tournaments on 17 vertices



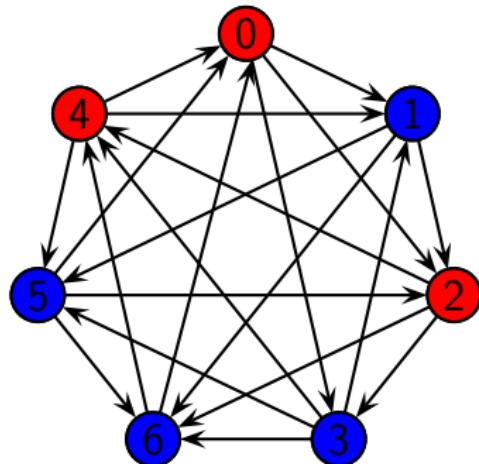
- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ A_1 A_2
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.

Tournaments on 17 vertices



- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ A_1 A_2
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.

Tournaments on 17 vertices



- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ A_1 A_2
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices.

Combines ideas from the previous sections

Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TT_5

- We build all the 3-chromatic 8-vertex tournaments we can by joining C_3 and TT_5 .
- We build all the 4-chromatic 13-vertex tournaments we can by joining C_3 and 2 TT_5 .
- We cannot build any 5-chromatic 18-vertex tournaments by joining C_3 and 3 TT_5 .

Combines ideas from the previous sections

Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TT_5

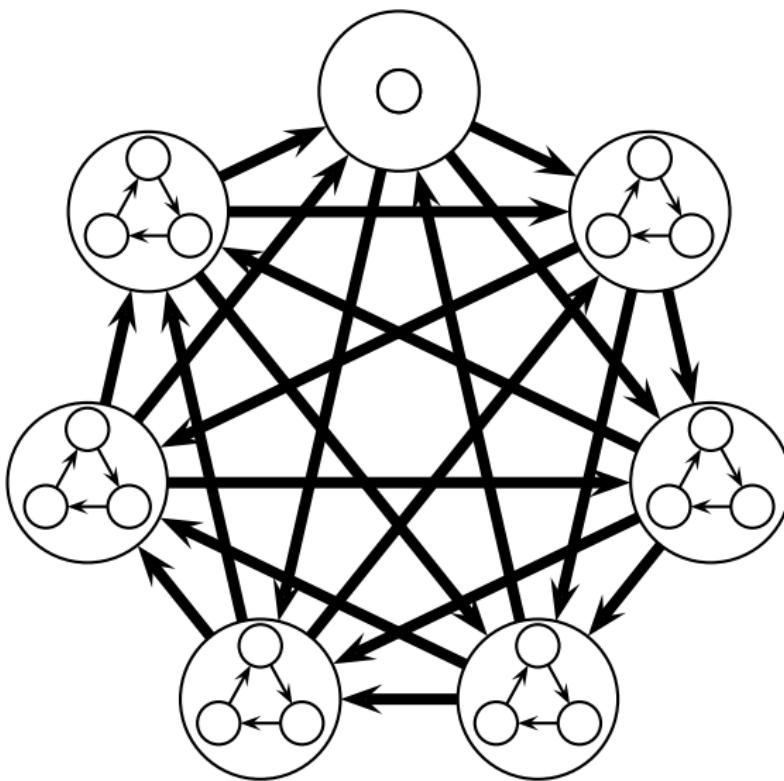
- We build all the 3-chromatic 8-vertex tournaments we can by joining C_3 and TT_5 .
- We build all the 4-chromatic 13-vertex tournaments we can by joining C_3 and 2 TT_5 .
- We cannot build any 5-chromatic 18-vertex tournaments by joining C_3 and 3 TT_5 .

If T has 2 disjoint TT_5

- Same idea as previous section but B induces one of the 94 3-chromatic 8-vertex TT_5 -free tournaments.

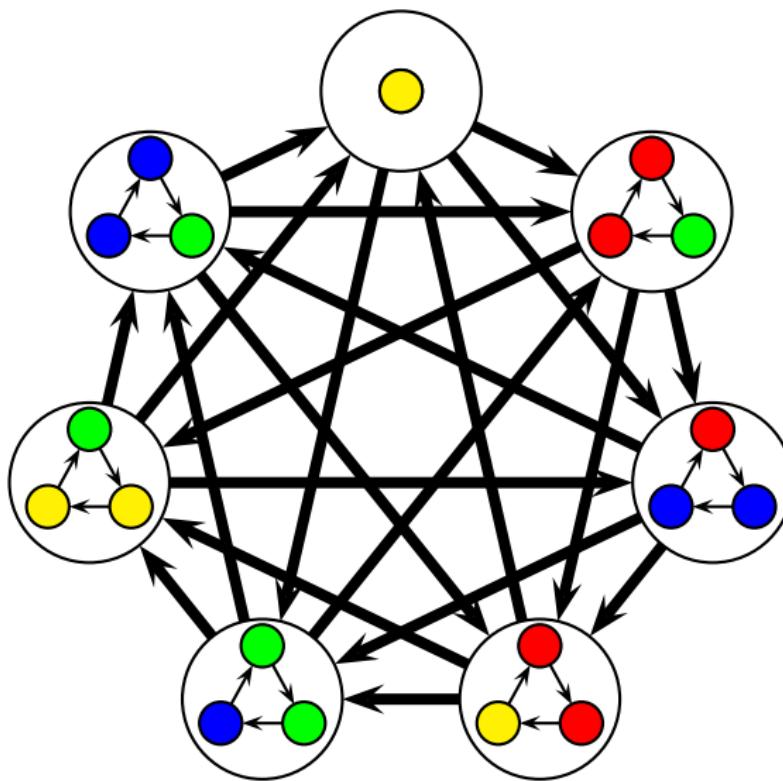
Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



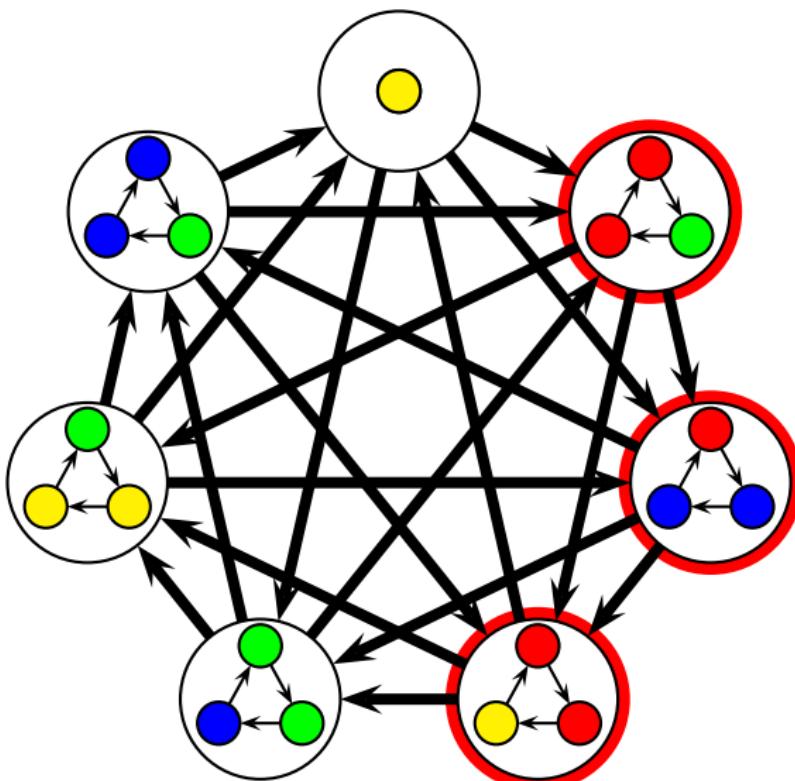
Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



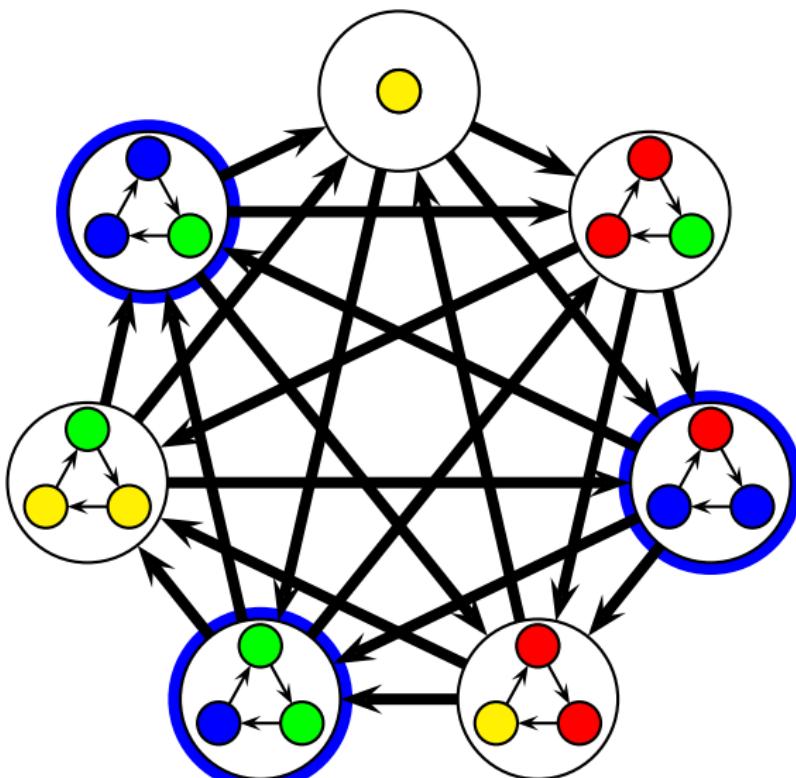
Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



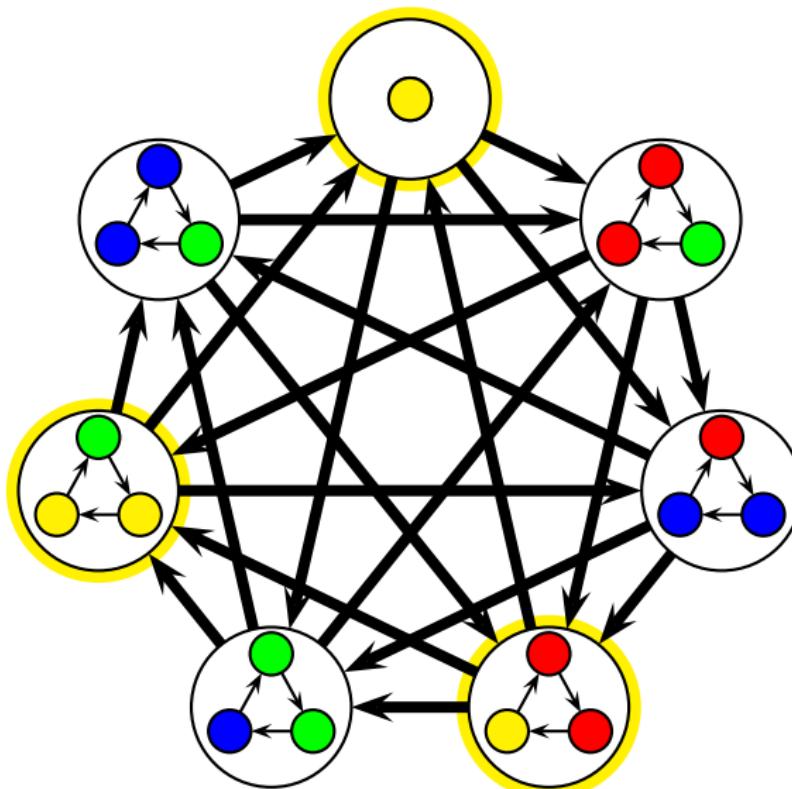
Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



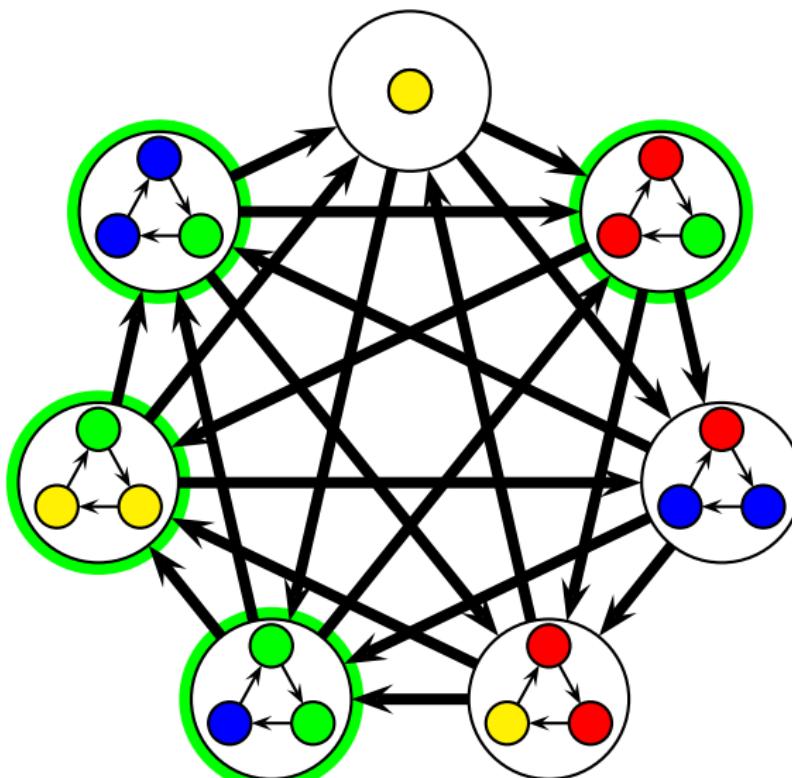
Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



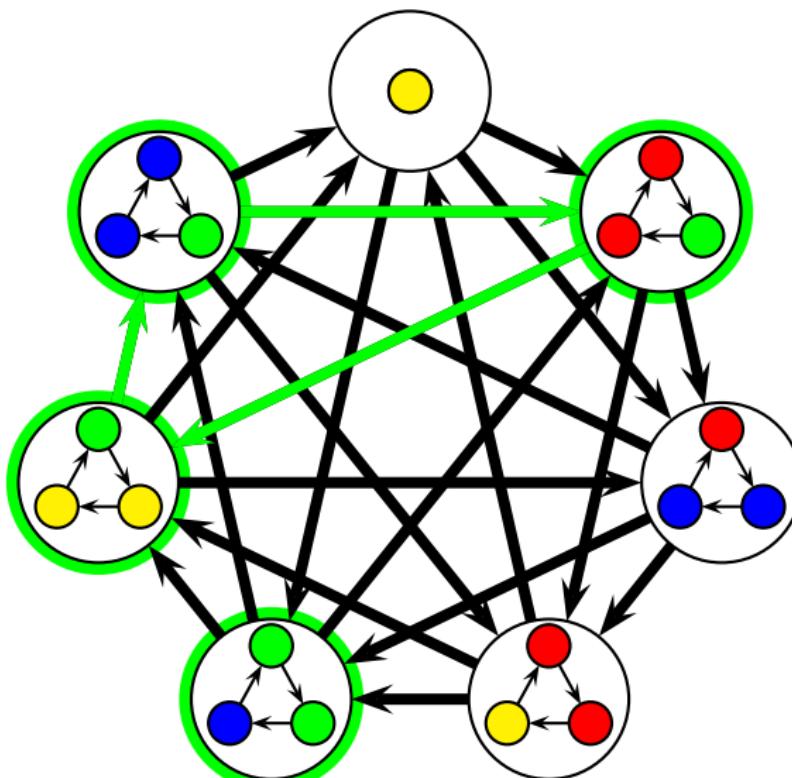
Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices



Perspectives

- Combinatorial proof that there are no vertex-critical tournaments on 12 vertices.
- Counting/enumerating the 5-chromatic 19-vertex tournaments?
- Computing n_6 seems currently out of reach.

Thank you!