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Definitions

Definitions

Normed space E = (Rn, ‖ · ‖).

A set A ∈ R
n avoids distance 1 iff ∀x , y ∈ A, ‖x − y‖ 6= 1.

(Upper) density of a measurable set A:

δ = lim sup
R→∞

Vol(A ∩ [−R ,R]n)

Vol([−R ,R]n)
.

Maximum density of a set avoiding distance 1:

m1(R
n, ‖ · ‖) = sup

A avoiding 1
δ(A).
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Definitions

Example

Let Λ be a set of two pairwise disjoint balls of radius 1.
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Definitions

Example

Let Λ be a set of two pairwise disjoint balls of radius 1.

We build from Λ a set avoiding distance 1 of density δ(Λ)
2n

.

If the unit ball associated to a norm ‖ · ‖ tiles Rn (‖ · ‖∞
for example) :

m1(R
n, ‖ · ‖) >

1

2n
.
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The Euclidean plane

Lower bounds

The previous construction proves that
m1(R

2, ‖ · ‖2) > 0.9069/4 > 0.2267.
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The Euclidean plane

Lower bounds

The previous construction proves that
m1(R

2, ‖ · ‖2) > 0.9069/4 > 0.2267.

Croft (1967) m1(R
2, ‖ · ‖2) > 0.229.
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The Euclidean plane

Upper bounds

Best upper bound : m1(R
2, ‖ · ‖2) 6 0.258795 (Keleti,

Matolcsi, de Oliveira Filho, Ruzsa, 2015).

Erdös’ conjecture : m1(R
2, ‖ · ‖2) < 1/4.

Generalization (Moser, Larman Rogers):
m1(R

n, ‖ · ‖2) <
1
2n
.
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Hadwiger-Nelson problem

Definitions

Chromatic number of a metric space

The chromatic number χ of a metric space(X , d) is the
smallest number of colours required to colour each point of X
so that no two points at distance 1 share the same colour.

Unit-distance graph

The unit-distance graph associated to a metric space (X , d) is
the graph G such that V (G ) = X and
E (G ) = {{x , y} : d(x , y ) = 1}.
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Hadwiger-Nelson problem

The Euclidean plane

χ(R2) 6 7:

χ(R2) > 4 (Moser’s spindle):

De Grey (April 2018): χ(R2) > 5.
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Hadwiger-Nelson problem

Measurable chromatic number

We define the measurable chromatic number χm of a metric
space (X , d) by adding the constraint that the colour classes
must be measurable set.

χm(R
n, ‖ · ‖) >

1

m1(Rn, ‖ · ‖)

Euclidean plane: χm(R
2) > 5. (Falconer, 1981)

Same bound as in the non-measurable case.
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The problem

Polytope norm

Polytope norm

Let P be a convex, symmetric polytope centered at 0 and of
non-empty interior. The polytope norm ‖ · ‖P associated to P
is by definition

‖x‖P = inf{t ∈ R
+ : x ∈ tP}.
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Polytope norm

Let P be a convex, symmetric polytope centered at 0 and of
non-empty interior. The polytope norm ‖ · ‖P associated to P
is by definition
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The problem

Polytope norm

Polytope norm

Let P be a convex, symmetric polytope centered at 0 and of
non-empty interior. The polytope norm ‖ · ‖P associated to P
is by definition

‖x‖P = inf{t ∈ R
+ : x ∈ tP}.

2
1
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The problem

If the unit ball associated to a norm ‖ · ‖P is a polytope that
tiles Rn (by translation), m1(R

n, ‖ · ‖P) >
1
2n
.

Conjecture (Bachoc, Robins)

If P tiles Rn (by translation), then m1(R
n, ‖ · ‖P) =

1
2n
.
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The problem

If the unit ball associated to a norm ‖ · ‖P is a polytope that
tiles Rn (by translation), m1(R

n, ‖ · ‖P) >
1
2n
.

Conjecture (Bachoc, Robins)

If P tiles Rn (by translation), then m1(R
n, ‖ · ‖P) =

1
2n
.

Theorem (Bachoc, Bellitto, Moustrou, Pêcher, 2017)

If P tiles R2 (by translation), then m1(R
2, ‖ · ‖P) =

1
4
.

Thomas Bellitto Optimal weighted independence ratio Thursday July 5, 2018 11 / 29



Context Polytope norms in the plane Weighted graphs Algorithm and results

Our approach

Method

Set S of density δ. X at random in R
n:
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Our approach

Method

Set S of density δ. X at random in R
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Our approach

Method

Set S of density δ. X at random in R
n: P(X ∈ S) = δ.

Unit-distance subgraph G at random in R
n:
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Our approach

Method

Set S of density δ. X at random in R
n: P(X ∈ S) = δ.

Unit-distance subgraph G at random in R
n:

E(|V ∩ S |) = |V | × δ.
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Our approach

Method

Set S of density δ. X at random in R
n: P(X ∈ S) = δ.

Unit-distance subgraph G at random in R
n:

E(|V ∩ S |) = |V | × δ.

If S avoids distance 1: |V ∩ S | 6 α(G ) → δ 6
α
|V |

.
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Our approach

Discretization lemma

For all unit-distance subgraph G in R
n:

m1(R
n) 6 α(G ) =

α(G )

|V |
.
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Our approach

Discretization lemma

For all unit-distance subgraph G in R
n:

m1(R
n) 6 α(G ) =

α(G )

|V |
.

Determining m1(R
2, ‖ · ‖∞)

K4 is a unit-distance subgraph.

m1(R
2, ‖ · ‖∞) =

1

4
.
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Definition

Definitions

Weighting of a graph: w : V → R
+.

Weight of a vertex set S :
∑

v∈S

w(v ).

Weighted independence number αw(G ) of a weighted graph
G : maximum weight of an independent set.

Weighted independence ratio αw(G ) = αw (G)
w(G)

.
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Definition

Definitions

Optimal weighted independence ratio α∗(G ) of an unweighted
graph G : minimum over all weightings of G of α(G ).

Discretization lemma

For all unit-distance subgraph G in R
n:

m1(R
n) 6 α∗(G ).
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Definition

The regular hexagon
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Definition

With an unweighted graph
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Definition

With an unweighted graph

Provided bound : 6
19

≃ 0.316.
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Definition

With a weighted graph
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Definition

With a weighted graph
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Definition

With a weighted graph

5
2

2

22

2
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1

2
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1

2

1 2

Provided bound : 9
35

≃ 0.257.
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Definition

Alternative proof of m1(R
2, ‖ · ‖H) 6

1
4

6

4

4

44

4

4

2

3

2

3

232

3

2

3

2 3

1 1

1 1

1

1

1

1

1

1

1

1

This graph has weighted independence ratio 1
4
.
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Relation to fractional colouring

Fractional colouring

Chromatic number

The chromatic number χ of a graph G is the smallest number
a such that a colours are sufficient to colour each vertex of G
in such a way that no two adjacent vertices share the same
colour.
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Relation to fractional colouring

Fractional colouring

Fractional chromatic number

The fractional chromatic number χf of a graph G is the
smallest number a

b
such that a colours are sufficient to assign

b colours to each vertex of G in such a way that no two
adjacent vertices share a common colour.
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Relation to fractional colouring

Fractional colouring

Fractional chromatic number

The fractional chromatic number χf of a graph G is the
smallest number a

b
such that a colours are sufficient to assign

b colours to each vertex of G in such a way that no two
adjacent vertices share a common colour.

χ(C5) = 3
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Relation to fractional colouring

Fractional colouring

Fractional chromatic number

The fractional chromatic number χf of a graph G is the
smallest number a

b
such that a colours are sufficient to assign

b colours to each vertex of G in such a way that no two
adjacent vertices share a common colour.

χ(C5) = 3 χf (C5) =
5

2
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Relation to fractional colouring

Fractional clique number

Fractional clique (Godsil and Royle, 2001)

A fractional clique is a weight distribution on the vertices of a
graph such that no independent set has weight more than 1.
The weight of a fractional clique is the total weight of the
graph under the weighting defined by the clique.
The fractional clique number ωf of a graph is the maximum
weight of a fractional clique.
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Relation to fractional colouring

Relation between these parameters

By strong duality, χf (G ) = ωf (G ).
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Relation to fractional colouring

Relation between these parameters

By strong duality, χf (G ) = ωf (G ).

By definition, α∗(G ) = 1
ωf (G)

= 1
χf (G)

.
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Relation to fractional colouring

Relation between these parameters

By strong duality, χf (G ) = ωf (G ).

By definition, α∗(G ) = 1
ωf (G)

= 1
χf (G)

.

1

χm(Rn, ‖ · ‖)
6 m1(R

n, ‖ · ‖) 6
1

χf (Rn, ‖ · ‖)
.
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Computing α
∗

LP formulation of χ and χf

S: set of all independent sets in the graph.
For all I ∈ S , xI indicates whether I is a colour class.















minimize
∑

I∈S

xI subject to

∀v ∈ V ,
∑

I∈S :x∈I

xI = 1

xI binary → chromatic number.
xI real → fractional chromatic number.
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Computing α
∗

LP reformulation of α∗

For every vertex v , wv indicates the weight of v :



























minimize M
∑

v∈V

wv = 1

∀I ∈ S,
∑

v∈I

wv 6 M
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Computing α
∗

LP reformulation of α∗

For every vertex v , wv indicates the weight of v :



























minimize M
∑

v∈V

wv = 1

∀I ∈ S,
∑

v∈I

wv 6 M

But generating S can be really long!
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Computing α
∗

Outline of the algorithm

We start with S = ∅ and a uniform weight distribution W on
the vertices of the graph.

We add to S a maximum weight independent set for W
(gives an upper bound on α∗).

We define W as the weight distribution that minimizes
the maximum weight of sets of S (gives a lower bound on
α∗).

We stop when the two bounds coincide.
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Computing α
∗

Optimization

Giving the same weight to all the vertices of the same
orbit.

Generating quickly interesting sets in S. With
parallelohedron norms, we can use the periodicity of
solutions.

Constraints based on the maximal cliques of the graph or
subgraphs of special interest (in the Euclidean case,
Moser’s spindle).
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Our results

The Euclidean plane

Cranston, Rabern (2017): χf (R
2) > 76

21
> 3.61904.

⇒ m1(R
2) 6 0.276316.
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Our results

The Euclidean plane

Cranston, Rabern (2017): χf (R
2) > 76

21
> 3.61904.

⇒ m1(R
2) 6 0.276316.

Exoo, Ismailescu (unpublished): χf (R
2) > 383

102
> 3.75491.

⇒ m1(R
2) 6 0.266319.

Keleti et al. (2015): m1(R
2) 6 0.258795.

Theorem (Bellitto, Pêcher, Sedillot)

χf (R
2) > 3.89366.

m1(R
2) 6 0.256828.
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Our results

Regular 3-dimensional parallelohedra

Current results (Bachoc, Bellitto, Moustrou, Pêcher)

m1 =
1
8

m1 =
1
8

m1 =
1
8

m1 =
1
8

m1 6 0.130443
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Thank you!
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