

Optimal weighting to minimize the independence ratio of a graph

THOMAS BELLITTO

Thursday July 5, 2018

LaBRI, University of Bordeaux, France

Joint work with

Christine Bachoc, IMB, University of Bordeaux, France
Philippe Moustrou, UiT Arctic University, Tromsø, Norway
Arnaud Pêcher, LaBRI, University of Bordeaux, France
Antoine Sedillot, ENS Paris-Saclay, France

1 Context

- Definitions
- The Euclidean plane
- Hadwiger-Nelson problem

2 Polytope norms in the plane

- The problem
- Our approach

3 Weighted graphs

- Definition
- Relation to fractional colouring

4 Algorithm and results

- Computing α^*
- Our results

Definitions

- Normed space $E = (\mathbb{R}^n, \|\cdot\|)$.
- A set $A \in \mathbb{R}^n$ avoids distance 1 iff $\forall x, y \in A, \|x - y\| \neq 1$.
- (Upper) density of a measurable set A :

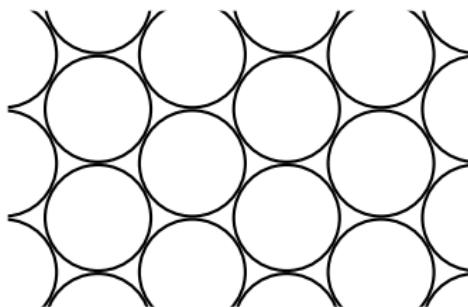
$$\delta = \limsup_{R \rightarrow \infty} \frac{\text{Vol}(A \cap [-R, R]^n)}{\text{Vol}([-R, R]^n)}.$$

- Maximum density of a set avoiding distance 1:

$$m_1(\mathbb{R}^n, \|\cdot\|) = \sup_{A \text{ avoiding } 1} \delta(A).$$

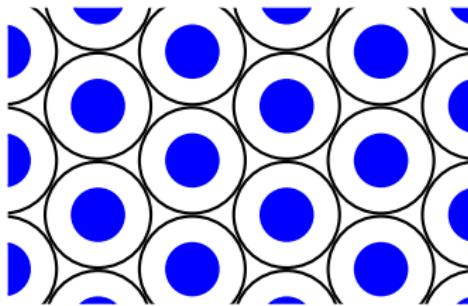
Example

- Let Λ be a set of two pairwise disjoint balls of radius 1.



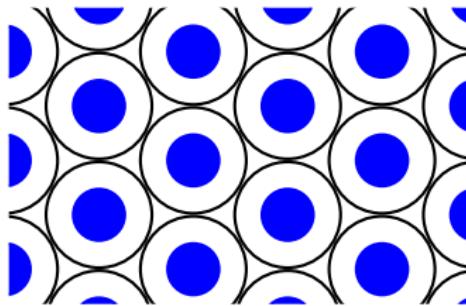
Example

- Let Λ be a set of two pairwise disjoint balls of radius 1.
- We build from Λ a set avoiding distance 1 of density $\frac{\delta(\Lambda)}{2^n}$.



Example

- Let Λ be a set of two pairwise disjoint balls of radius 1.
- We build from Λ a set avoiding distance 1 of density $\frac{\delta(\Lambda)}{2^n}$.



- If the unit ball associated to a norm $\|\cdot\|$ tiles \mathbb{R}^n ($\|\cdot\|_\infty$ for example) :

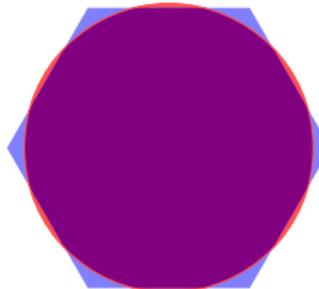
$$m_1(\mathbb{R}^n, \|\cdot\|) \geq \frac{1}{2^n}.$$

Lower bounds

- The previous construction proves that $m_1(\mathbb{R}^2, \|\cdot\|_2) \geq 0.9069/4 \geq 0.2267$.

Lower bounds

- The previous construction proves that $m_1(\mathbb{R}^2, \|\cdot\|_2) \geq 0.9069/4 \geq 0.2267$.
- Croft (1967) $m_1(\mathbb{R}^2, \|\cdot\|_2) \geq 0.229$.



Upper bounds

- Best upper bound : $m_1(\mathbb{R}^2, \|\cdot\|_2) \leq 0.258795$ (Keleti, Matolcsi, de Oliveira Filho, Ruzsa, 2015).
- Erdős' conjecture : $m_1(\mathbb{R}^2, \|\cdot\|_2) < 1/4$.
- Generalization (Moser, Larman Rogers):
 $m_1(\mathbb{R}^n, \|\cdot\|_2) < \frac{1}{2^n}$.

Definitions

Chromatic number of a metric space

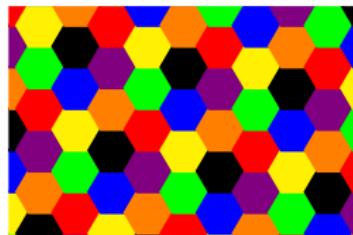
The **chromatic number** χ of a metric space (X, d) is the smallest number of colours required to colour each point of X so that no two points at distance 1 share the same colour.

Unit-distance graph

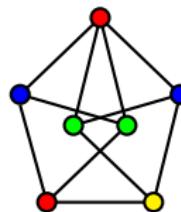
The **unit-distance graph** associated to a metric space (X, d) is the graph G such that $V(G) = X$ and $E(G) = \{\{x, y\} : d(x, y) = 1\}$.

The Euclidean plane

- $\chi(\mathbb{R}^2) \leq 7$:



- $\chi(\mathbb{R}^2) \geq 4$ (Moser's spindle):



- De Grey (April 2018): $\chi(\mathbb{R}^2) \geq 5$.

Measurable chromatic number

We define the **measurable chromatic number** χ_m of a metric space (X, d) by adding the constraint that the colour classes must be measurable set.

$$\chi_m(\mathbb{R}^n, \|\cdot\|) \geq \frac{1}{m_1(\mathbb{R}^n, \|\cdot\|)}$$

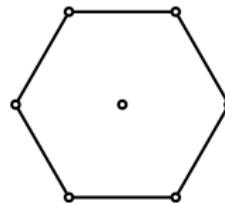
Euclidean plane: $\chi_m(\mathbb{R}^2) \geq 5$. (Falconer, 1981)
Same bound as in the non-measurable case.

Polytope norm

Polytope norm

Let \mathcal{P} be a convex, symmetric polytope centered at 0 and of non-empty interior. The *polytope norm* $\|\cdot\|_{\mathcal{P}}$ associated to \mathcal{P} is by definition

$$\|x\|_{\mathcal{P}} = \inf\{t \in \mathbb{R}^+ : x \in t\mathcal{P}\}.$$

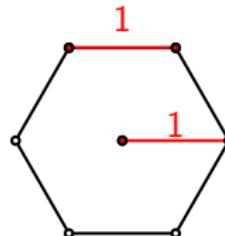


Polytope norm

Polytope norm

Let \mathcal{P} be a convex, symmetric polytope centered at 0 and of non-empty interior. The *polytope norm* $\|\cdot\|_{\mathcal{P}}$ associated to \mathcal{P} is by definition

$$\|x\|_{\mathcal{P}} = \inf\{t \in \mathbb{R}^+ : x \in t\mathcal{P}\}.$$

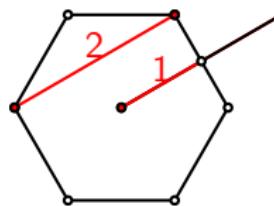


Polytope norm

Polytope norm

Let \mathcal{P} be a convex, symmetric polytope centered at 0 and of non-empty interior. The *polytope norm* $\|\cdot\|_{\mathcal{P}}$ associated to \mathcal{P} is by definition

$$\|x\|_{\mathcal{P}} = \inf\{t \in \mathbb{R}^+ : x \in t\mathcal{P}\}.$$



If the unit ball associated to a norm $\|\cdot\|_{\mathcal{P}}$ is a polytope that tiles \mathbb{R}^n (by translation), $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) \geq \frac{1}{2^n}$.

Conjecture (Bachoc, Robins)

If \mathcal{P} tiles \mathbb{R}^n (by translation), then $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) = \frac{1}{2^n}$.

If the unit ball associated to a norm $\|\cdot\|_{\mathcal{P}}$ is a polytope that tiles \mathbb{R}^n (by translation), $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) \geq \frac{1}{2^n}$.

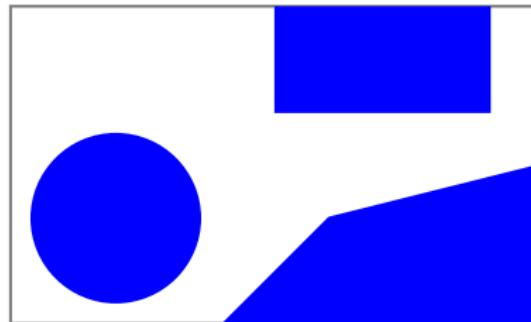
Conjecture (Bachoc, Robins)

If \mathcal{P} tiles \mathbb{R}^n (by translation), then $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) = \frac{1}{2^n}$.

Theorem (Bachoc, Bellitto, Moustrou, Pêcher, 2017)

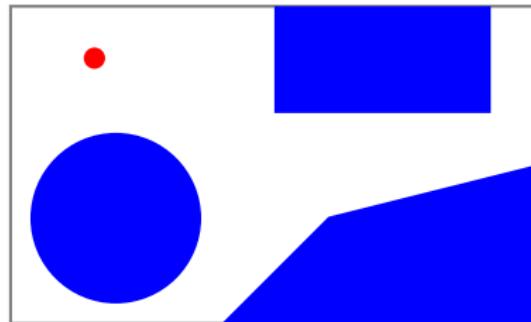
If \mathcal{P} tiles \mathbb{R}^2 (by translation), then $m_1(\mathbb{R}^2, \|\cdot\|_{\mathcal{P}}) = \frac{1}{4}$.

Method



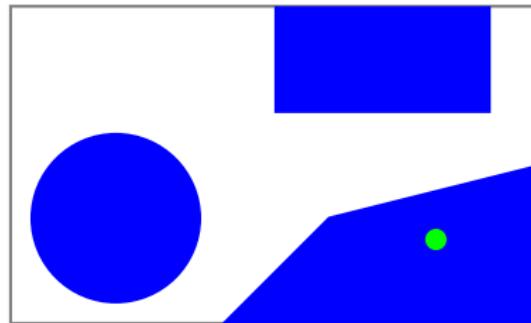
Set S of density δ . X at random in \mathbb{R}^n :

Method



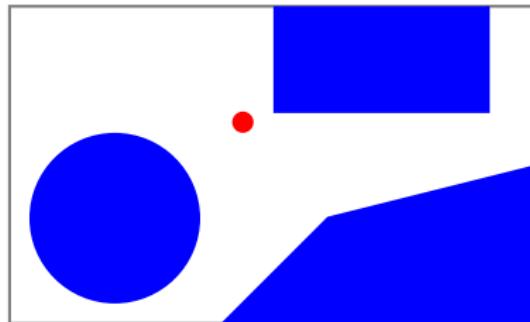
Set S of density δ . X at random in \mathbb{R}^n :

Method



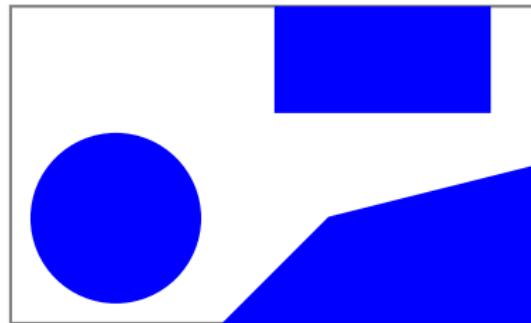
Set S of density δ . X at random in \mathbb{R}^n :

Method



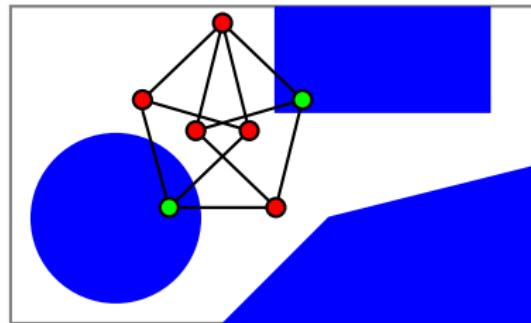
Set S of density δ . X at random in \mathbb{R}^n :

Method



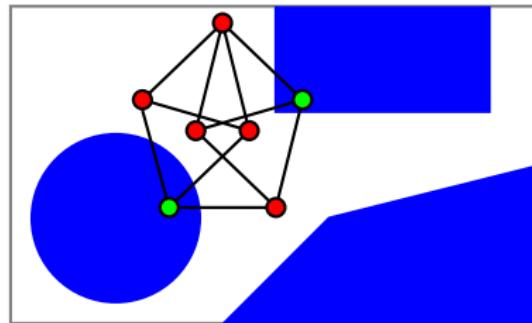
Set S of density δ . X at random in \mathbb{R}^n : $\mathbb{P}(X \in S) = \delta$.

Method



Set S of density δ . X at random in \mathbb{R}^n : $\mathbb{P}(X \in S) = \delta$.
Unit-distance subgraph G at random in \mathbb{R}^n :

Method

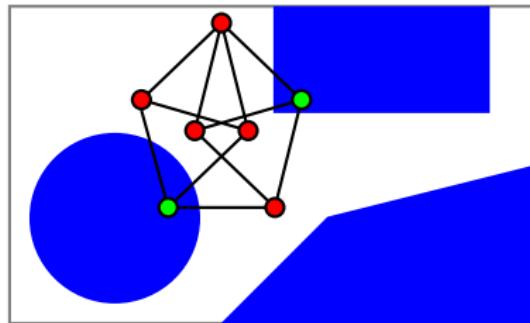


Set S of density δ . X at random in \mathbb{R}^n : $\mathbb{P}(X \in S) = \delta$.

Unit-distance subgraph G at random in \mathbb{R}^n :

$$\mathbb{E}(|V \cap S|) = |V| \times \delta.$$

Method



Set S of density δ . X at random in \mathbb{R}^n : $\mathbb{P}(X \in S) = \delta$.

Unit-distance subgraph G at random in \mathbb{R}^n :

$$\mathbb{E}(|V \cap S|) = |V| \times \delta.$$

If S avoids distance 1: $|V \cap S| \leq \alpha(G) \rightarrow \delta \leq \frac{\alpha}{|V|}$.

Discretization lemma

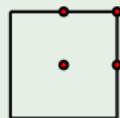
For all unit-distance subgraph G in \mathbb{R}^n :

$$m_1(\mathbb{R}^n) \leq \overline{\alpha(G)} = \frac{\alpha(G)}{|V|}.$$

Discretization lemma

For all unit-distance subgraph G in \mathbb{R}^n :

$$m_1(\mathbb{R}^n) \leq \overline{\alpha(G)} = \frac{\alpha(G)}{|V|}.$$

Determining $m_1(\mathbb{R}^2, \|\cdot\|_\infty)$ 

K_4 is a unit-distance subgraph.

$$m_1(\mathbb{R}^2, \|\cdot\|_\infty) = \frac{1}{4}.$$

Definitions

Weighting of a graph: $w : V \rightarrow \mathbb{R}^+$.

Weight of a vertex set S : $\sum_{v \in S} w(v)$.

Weighted independence number $\alpha_w(G)$ of a weighted graph G : maximum weight of an independent set.

Weighted independence ratio $\overline{\alpha_w(G)} = \frac{\alpha_w(G)}{w(G)}$.

Definitions

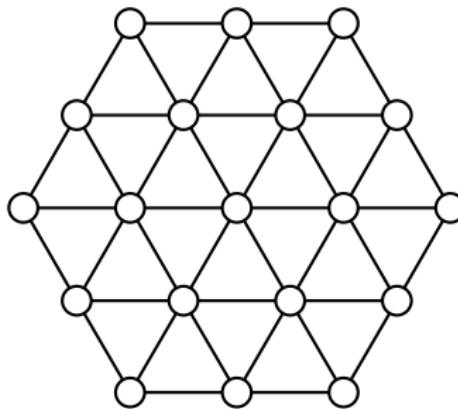
Optimal weighted independence ratio $\alpha^*(G)$ of an unweighted graph G : minimum over all weightings of G of $\alpha(G)$.

Discretization lemma

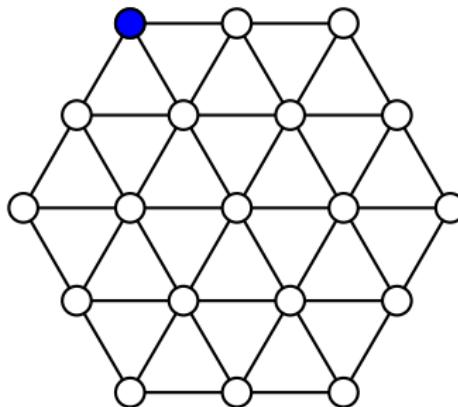
For all unit-distance subgraph G in \mathbb{R}^n :

$$m_1(\mathbb{R}^n) \leq \alpha^*(G).$$

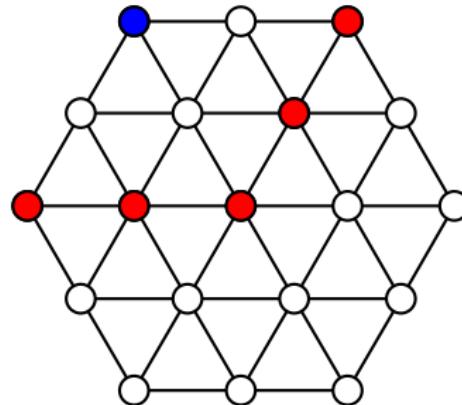
With an unweighted graph



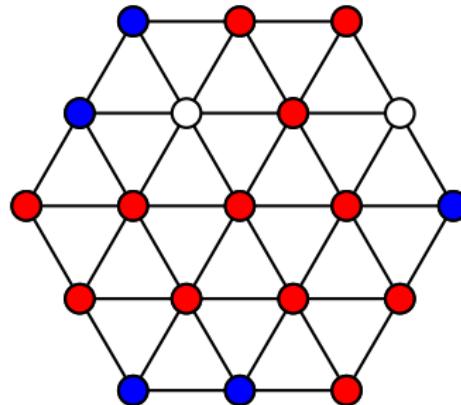
With an unweighted graph



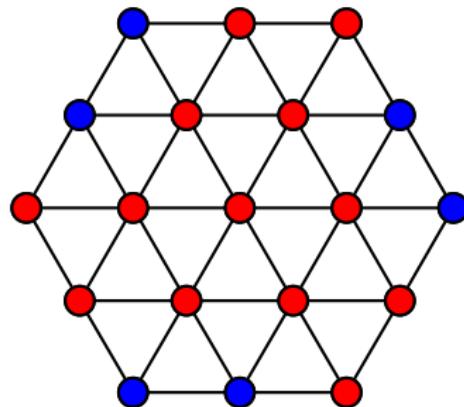
With an unweighted graph



With an unweighted graph

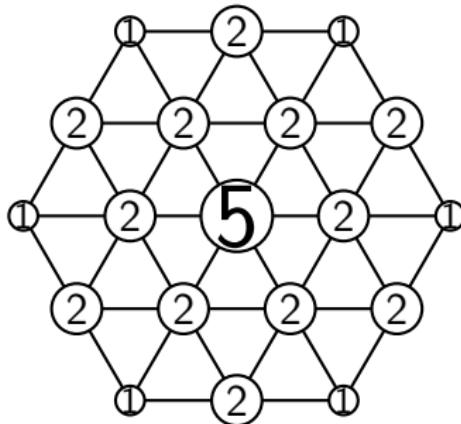


With an unweighted graph

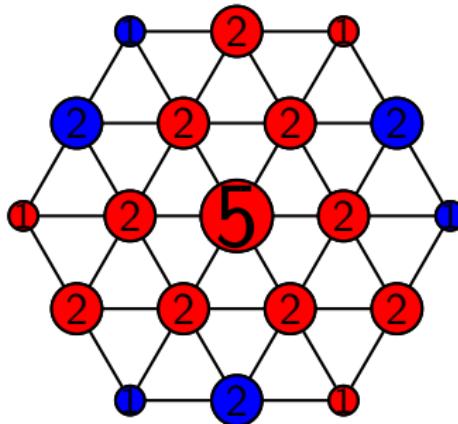


Provided bound : $\frac{6}{19} \simeq 0.316$.

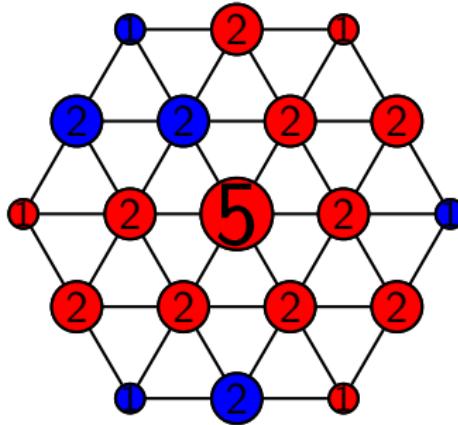
With a weighted graph



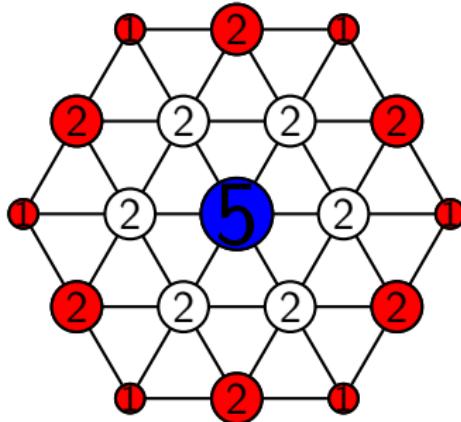
With a weighted graph



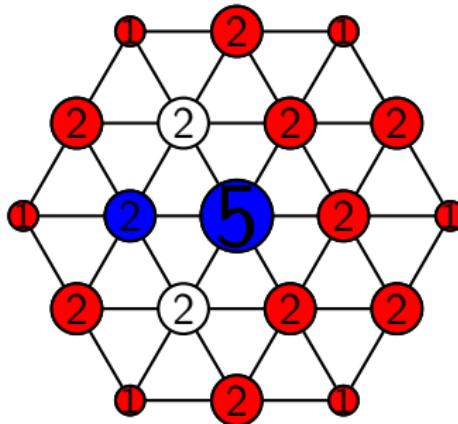
With a weighted graph



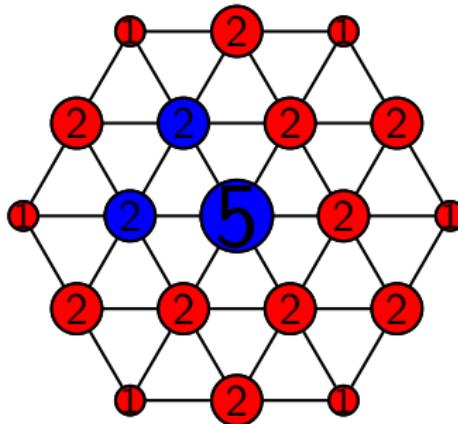
With a weighted graph



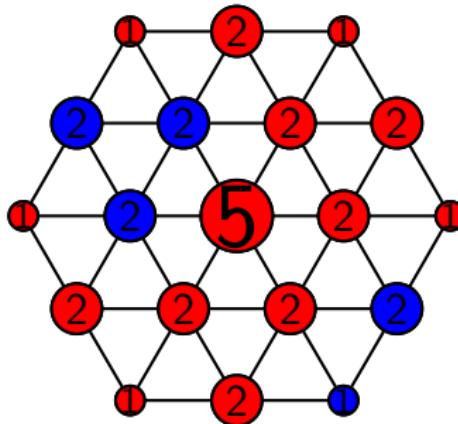
With a weighted graph



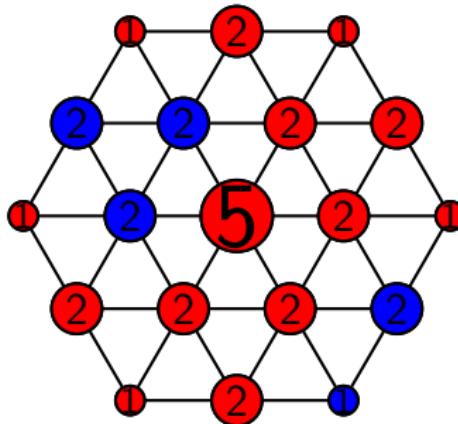
With a weighted graph



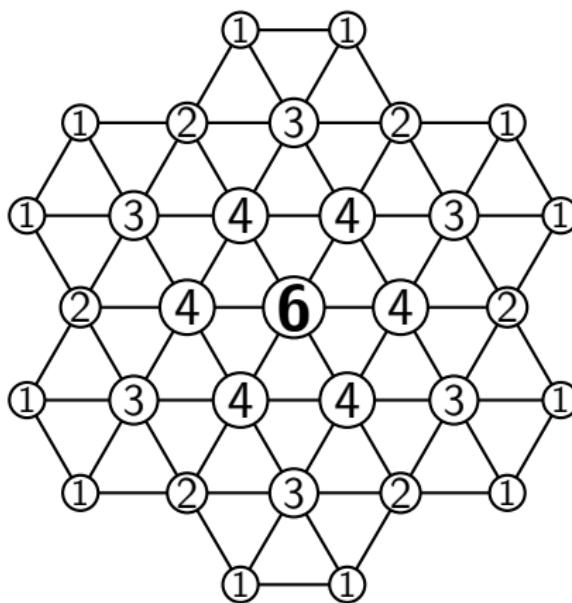
With a weighted graph



With a weighted graph



Provided bound : $\frac{9}{35} \simeq 0.257$.

Alternative proof of $m_1(\mathbb{R}^2, \|\cdot\|_{\mathcal{H}}) \leq \frac{1}{4}$ 

This graph has weighted independence ratio $\frac{1}{4}$.

Fractional colouring

Chromatic number

The chromatic number χ of a graph G is the smallest number a such that a colours are sufficient to colour each vertex of G in such a way that no two adjacent vertices share the same colour.

Fractional colouring

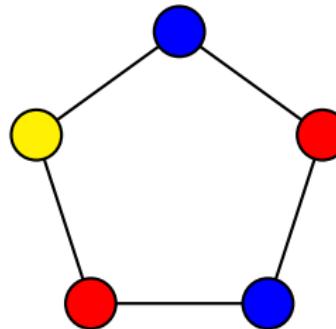
Fractional chromatic number

The **fractional** chromatic number χ_f of a graph G is the smallest number $\frac{a}{b}$ such that a colours are sufficient to **assign b colours** to each vertex of G in such a way that no two adjacent vertices share a common colour.

Fractional colouring

Fractional chromatic number

The **fractional** chromatic number χ_f of a graph G is the smallest number $\frac{a}{b}$ such that a colours are sufficient to **assign b colours** to each vertex of G in such a way that no two adjacent vertices share a common colour.

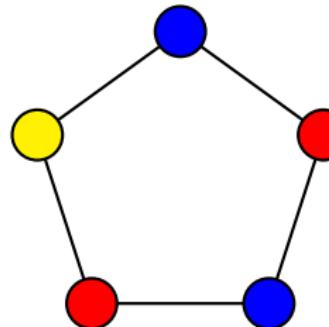


$$\chi(C_5) = 3$$

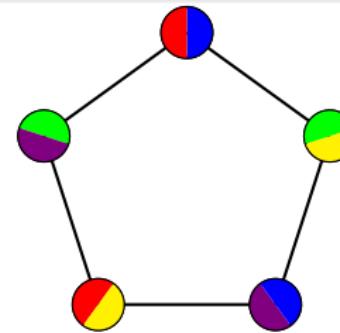
Fractional colouring

Fractional chromatic number

The **fractional** chromatic number χ_f of a graph G is the smallest number $\frac{a}{b}$ such that a colours are sufficient to **assign b colours** to each vertex of G in such a way that no two adjacent vertices share a common colour.



$$\chi(C_5) = 3$$



$$\chi_f(C_5) = \frac{5}{2}$$

Fractional clique number

Fractional clique (Godsil and Royle, 2001)

A **fractional clique** is a weight distribution on the vertices of a graph such that no independent set has weight more than 1.

The **weight** of a fractional clique is the total weight of the graph under the weighting defined by the clique.

The **fractional clique number** ω_f of a graph is the maximum weight of a fractional clique.

Relation to fractional colouring

Relation between these parameters

By strong duality, $\chi_f(G) = \omega_f(G)$.

Relation between these parameters

By strong duality, $\chi_f(G) = \omega_f(G)$.

By definition, $\alpha^*(G) = \frac{1}{\omega_f(G)} = \frac{1}{\chi_f(G)}$.

Relation between these parameters

By strong duality, $\chi_f(G) = \omega_f(G)$.

By definition, $\alpha^*(G) = \frac{1}{\omega_f(G)} = \frac{1}{\chi_f(G)}$.

$$\frac{1}{\chi_m(\mathbb{R}^n, \|\cdot\|)} \leq m_1(\mathbb{R}^n, \|\cdot\|) \leq \frac{1}{\chi_f(\mathbb{R}^n, \|\cdot\|)}.$$

LP formulation of χ and χ_f

\mathcal{S} : set of all independent sets in the graph.

For all $I \in \mathcal{S}$, x_I indicates whether I is a colour class.

$$\begin{cases} \text{minimize} \sum_{I \in \mathcal{S}} x_I \text{ subject to} \\ \forall v \in V, \sum_{I \in \mathcal{S}: v \in I} x_I = 1 \end{cases}$$

x_I binary \rightarrow chromatic number.

x_I real \rightarrow fractional chromatic number.

LP reformulation of α^*

For every vertex v , w_v indicates the weight of v :

$$\left\{ \begin{array}{l} \text{minimize } M \\ \sum_{v \in V} w_v = 1 \\ \forall I \in \mathcal{S}, \sum_{v \in I} w_v \leq M \end{array} \right.$$

Computing α^* LP reformulation of α^*

For every vertex v , w_v indicates the weight of v :

$$\left\{ \begin{array}{l} \text{minimize } M \\ \sum_{v \in V} w_v = 1 \\ \forall I \in \mathcal{S}, \sum_{v \in I} w_v \leq M \end{array} \right.$$

But generating \mathcal{S} can be really long!

Outline of the algorithm

We start with $\mathcal{S} = \emptyset$ and a uniform weight distribution W on the vertices of the graph.

- We add to \mathcal{S} a maximum weight independent set for W (gives an upper bound on α^*).
- We define W as the weight distribution that minimizes the maximum weight of sets of \mathcal{S} (gives a lower bound on α^*).

We stop when the two bounds coincide.

Optimization

- Giving the same weight to all the vertices of the same orbit.
- Generating quickly interesting sets in \mathcal{S} . With parallelohedron norms, we can use the periodicity of solutions.
- Constraints based on the maximal cliques of the graph or subgraphs of special interest (in the Euclidean case, Moser's spindle).

The Euclidean plane

Cranston, Rabern (2017): $\chi_f(\mathbb{R}^2) \geq \frac{76}{21} \geq 3.61904$.
 $\Rightarrow m_1(\mathbb{R}^2) \leq 0.276316$.

The Euclidean plane

Cranston, Rabern (2017): $\chi_f(\mathbb{R}^2) \geq \frac{76}{21} \geq 3.61904$.

$\Rightarrow m_1(\mathbb{R}^2) \leq 0.276316$.

Exoo, Ismailescu (unpublished): $\chi_f(\mathbb{R}^2) \geq \frac{383}{102} \geq 3.75491$.

$\Rightarrow m_1(\mathbb{R}^2) \leq 0.266319$.

The Euclidean plane

Cranston, Rabern (2017): $\chi_f(\mathbb{R}^2) \geq \frac{76}{21} \geq 3.61904$.

$\Rightarrow m_1(\mathbb{R}^2) \leq 0.276316$.

Exoo, Ismailescu (unpublished): $\chi_f(\mathbb{R}^2) \geq \frac{383}{102} \geq 3.75491$.

$\Rightarrow m_1(\mathbb{R}^2) \leq 0.266319$.

Keleti et al. (2015): $m_1(\mathbb{R}^2) \leq 0.258795$.

The Euclidean plane

Cranston, Rabern (2017): $\chi_f(\mathbb{R}^2) \geq \frac{76}{21} \geq 3.61904$.

$\Rightarrow m_1(\mathbb{R}^2) \leq 0.276316$.

Exoo, Ismailescu (unpublished): $\chi_f(\mathbb{R}^2) \geq \frac{383}{102} \geq 3.75491$.

$\Rightarrow m_1(\mathbb{R}^2) \leq 0.266319$.

Keleti et al. (2015): $m_1(\mathbb{R}^2) \leq 0.258795$.

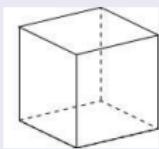
Theorem (Bellitto, Pêcher, Sedillot)

$$\chi_f(\mathbb{R}^2) \geq 3.89366.$$

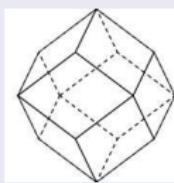
$$m_1(\mathbb{R}^2) \leq 0.256828.$$

Regular 3-dimensional parallelotopes

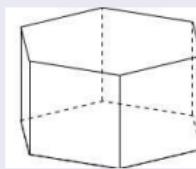
Current results (Bachoc, Bellitto, Moustrou, Pêcher)



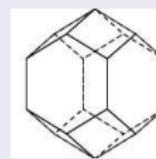
$$m_1 = \frac{1}{8}$$



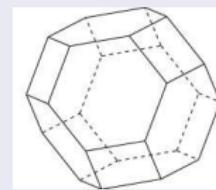
$$m_1 = \frac{1}{8}$$



$$m_1 = \frac{1}{8}$$



$$m_1 = \frac{1}{8}$$



$$m_1 \leq 0.130443$$

Thank you!