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Ramsey's problem

Complete graph where every edge is either red or blue.

5 vertices
no blue triangle

no red triangle

6 vertices
always a blue or

a red triangle
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Ramsey's theorem (1930)

For all k, there exists Ry such that every complete
2-edge-colored graph with at least Ry vertices admits a
monochromatic clique of size k.
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Ramsey's theorem (1930)

For all k, there exists Ry such that every complete
2-edge-colored graph with at least Ry vertices admits a
monochromatic clique of size k.

@ Blue and red edges can be replaced by edges and
non-edges (every graph with 6 vertices either has a clique
or an independant set of size 3).
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Ramsey's theorem (1930)

For all k, there exists Ry such that every complete
2-edge-colored graph with at least Ry vertices admits a
monochromatic clique of size k.

@ Blue and red edges can be replaced by edges and
non-edges (every graph with 6 vertices either has a clique
or an independant set of size 3).

@ Ramsey theory: if a structure is big enough, it must have
certain properties.
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Ramsey numbers

ORlz]. R2:2 R3:6 R4:18 R5:?
o V2" < R, < 4" (Erdés, 1947)

Erdés (reported by Spencer in 1990)

“Suppose aliens invade the earth and threaten to obliterate it in a year's
time unless human beings can find the Ramsey number for red five and
blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If
the aliens demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a preemptive attack.”

4
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Erdés (reported by Spencer in 1990)

“Suppose aliens invade the earth and threaten to obliterate it in a year's
time unless human beings can find the Ramsey number for red five and
blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If
the aliens demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a preemptive attack.”

@ State of the art in 1990: 43 < Rs < 49 (Geoffrey Exoo,
1989)
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Ramsey numbers

ORlz]. R2:2 R3:6 R4:18 R5:?
o V2" < R, < 4" (Erdés, 1947)

Erdés (reported by Spencer in 1990)

“Suppose aliens invade the earth and threaten to obliterate it in a year's
time unless human beings can find the Ramsey number for red five and
blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If
the aliens demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a preemptive attack.”

4

@ State of the art in 1990: 43 < Rs < 49 (Geoffrey Exoo,
1089)

@ Rs < 48 (Angeltveit and McKay, 2017)

@ Rs < 46 (Angeltveit and McKay, 2024)
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Ramsey numbers

Several fields developed thanks to Ramsey’s problems:

@ Probabilistic method (Erdds, 1947):
If every edge is blue or red with proba 1/2.
A 5-clique has 10 edges, it is monochromatic with probability
1/2° = 1/512.
A graph with 11 vertices has () = 462 cliques of size 5.
Probability to have a monochromatic clique < 462/512 < 1.
Rs > 12
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Ramsey numbers

Several fields developed thanks to Ramsey’s problems:

@ Probabilistic method (Erdds, 1947):
If every edge is blue or red with proba 1/2.
A 5-clique has 10 edges, it is monochromatic with probability
1/2° = 1/512.
A graph with 11 vertices has () = 462 cliques of size 5.
Probability to have a monochromatic clique < 462/512 < 1.
Rs > 12

@ Graph enumeration, graph isomorphism problem, automorphism
detection (NAUTY, McKay)

THOMAS BELLITTO The smallest 5-chromatic tournament Wednesday June 04, 2025



Introduction: Ramsey theory
[e]e]e]e] Telele]

Variants

® R,p. Rys5 =25 (McKay, Radziszowski, 1995)
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Variants

® R,p. Rys5 =25 (McKay, Radziszowski, 1995)
® Ripe. Razz=17

@ Forbidding other structures than cliques.
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Variants

Rap.  Ras =25 (McKay, Radziszowski, 1995)

Ribe. Raszsz =17

Forbidding other structures than cliques.

Directed Ramsey numbers: edges are oriented instead of
being blue and red. We look for ordered sets instead of
monochromatic cliques.
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An oriented graph is a directed graph such that for every pair
of vertices u, v, there is at most one arc between u and v.
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An oriented graph is a directed graph such that for every pair
of vertices u, v, there is at most one arc between u and v.

Tournaments

A tournament is a directed graph such that for every pair of
vertices u, v, there is exactly one arc between v and v.

A tournament is transitive iff for every arc uv and vw, there
exists an arc uw.
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Tournaments

Oriented graphs

An oriented graph is a directed graph such that for every pair
of vertices u, v, there is at most one arc between u and v.

Tournaments

A tournament is a directed graph such that for every pair of
vertices u, v, there is exactly one arc between v and v.

A tournament is transitive iff for every arc uv and vw, there
exists an arc uw.

Transitive tournament = Acyclic tournament

\
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Directed Ramsey Numbers

Theorem (Erdés, Moser, 1964)

For all k, there exists Ry such that every tournament with at
least Ry vertices admits a transitive set of size k.

Il 1
S

8 (Sanchez-Flores, 1994)
2 < 47 (Neiman, Mackey, Heule, 2020)
2") (Erdés, Moser, 1964)

w
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Paley tournaments

If n =4k + 3 is prime, the Paley tournament on n vertices P,
is the tournament such that there is an arc from i to j iff j — /
is a square mod n.
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is a square mod n.

Example: the squares modulo 7 are 1,4 and 2.
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Our problem
@000

Directed coloring

Chromatic number

The chromatic number of a graph G is the smallest number
of colors required to assign a color to each vertex of the graph
so that no color class contains an edge.
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[e] le]e]

Neumann-Lara's problems (1982)

Every orientation of a planar graph is 2-colorable.

The problem this talk is about

What is the size n, of the smallest oriented graph of
chromatic number k?

@ Can be restricted to tournaments.

@ Proper coloring of a tournament = partition into
transitive subtournaments.

@ Size of the smallest undirected triangle-free graph of
chromatic number k? 11 for k = 4 (Chvatal, 1970), 22
for k =5 (Jensen, Royle, 1995), open for k > 6, between
32 and 40 (Goedgebeur, 2020).
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@ N = 3.
@ n3 = 7. 4 such tournaments including P; (no TTy).
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Only such tournament is Pi;.

@ Py5 does not exist, Pig and P,3 are 4-colorable, Ps>; does
not exist.
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Our problem
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State of the art

@ Ny = 3.

@ n3 = 7. 4 such tournaments including P; (no TTy).

@ Erdds, 1979: maximum dichromatic number of a
tournament on n vertices is ().

@ Neumann-Lara, 1994: n, = 11.
Only such tournament is Pi;.

@ Py5 does not exist, Pig and P,3 are 4-colorable, Ps>; does
not exist.

Conjecture (Neumann-Lara, 1994)

n5:17

“l know that 17 < n5 < 19.
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Our problem
[e]ele] ]

Can we brutefoce it?

Up to isomorphisms, there are

@ 244912778438520759443245824 (27 digits) tournaments
on 17 vertices;

@ 1783398846284777975419600287232 (31 digits)
tournaments on 18 vertices;

@ 24605641171260376770598003978281472 (35 digits)
tournaments on 19 vertices.

Enumerating them up to isomorphisms is difficult.
We have to solve an NP-complete problem on each of them.
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Our results
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© Our results
@ Tournaments on 12 vertices
@ Tournaments on 17 vertices
@ Tournaments on 18 vertices
@ Tournaments on 19 vertices
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Our results
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Tournaments on 12 vertices

Structure

Theorem (Sanchez-Flores, 1998)

There is a unique tournament on 12 vertices that does not
contain a TTs and it is 3-chromatic.

Consequence

In every 4-chromatic tournament on 12 vertices, there is a
TTs whose removal yields one of the four 3-chromatic
tournament on 7 vertices.
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Our results
[e]e] Je]

Tournaments on 12 vertices

REIIRS

Theorem (Bellitto, Bousquet, Kabela, Pierron)

Every 4-chromatic tournament on 12 vertices :
@ contains Pi;;

@ is a junction of TTs and W; (the 3-chromatic 7-vertex
tournament contained by P11).

There are 3-chromatic tournaments on 8 vertices that do not
contain any 3-chromatic tournaments on 7 vertices.
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Tournaments on 17 vertices

Outline of the proof

Structure of the graph

If T is a b-chromatic tournament on 17 vertices, then we can
partition its vertices into A;, A, and B such that

@ A; and A, induce two copies of TTs
@ B induces a copy of W,
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Tournaments on 17 vertices

Outline of the proof

Structure of the graph

If T is a b-chromatic tournament on 17 vertices, then we can
partition its vertices into A;, A, and B such that

@ A; and A, induce two copies of TTs
@ B induces a copy of W,

41 arcs decided, 95 left to go...

Can we partition B into B; and B, such that the tournaments
induced by A; U B; and A, U B, are 2-colorable?
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Our results
oe

Tournaments on 17 vertices

o (A U{0,1,4}) =2.

o (A U{0,1,2,3}) =2
or
X(A;U{0,4,5,6}) =2 .

o If x(A;U{4,5,6}) > 2 and
x(A;U{2,3,5,6}) > 2, then
X(Ai U {07 2, 4}) =
X(A,‘ U {1, 3, 5, 6} = 2.

)

o If x(A;U{1,2,3}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,1,6}) =
x(A;U{2,3,4,5}) =2.
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Tournaments on 17 vertices

o (A U{0,1,4})=2.

o \(AU{0,1,2,3}) =2 A
or
X(AI U {0747 576}) =2 A2-

o If x(A;U{4,5,6}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,2,4}) =
x(A;U{1,3,5,6}) =

o If x(A;U{1,2,3}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,1,6}) =
x(A;U{2,3,4,5}) =
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Tournaments on 17 vertices

o (A U{0,1,4}) =2.

o Y(AU{0,1,2,3) =2 A A
or
X(A;U{0,4,5,6}) =2 .

o If x(A;U{4,5,6}) > 2 and
x(A;U{2,3,5,6}) > 2, then
X(Ai U {07 2, 4}) =
X(A,‘ U {1, 3, 5, 6} = 2.

)

o If x(A;U{1,2,3}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,1,6}) =
x(A;U{2,3,4,5}) =2.
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Tournaments on 17 vertices

o (A U{0,1,4})=2.

o X(A, U {O ]., 23}) =2 A1 A2
or
x(AiU{0,4,5,6}) =

o If x(A;U{4,5,6}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,2,4}) =
x(A;U{1,3,5,6}) =

o If x(A;U{1,2,3}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,1,6}) =
x(A;U{2,3,4,5}) =
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Tournaments on 17 vertices

o (A U{0,1,4)) =2

o Y(AU{0,1,2,3) =2 A A
or
x(A;U{0,4,5,6}) =

o If x(A;U{4,5,6}) > 2 and
X(A;U{2,3,5,6}) > 2, then
x(A;U{0,2,4}) =
x(A;U{1,3,5,6}) =

o If x(A;U{1,2,3}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,1,6}) =
x(A;U{2,3,4,5}) =
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Tournaments on 17 vertices

o (A U{0,1,4}) =2.

o \(AU{0,1,2,3}) =2 A; A,
or
X(AI U {07 47 57 6})

o If x(A;U{4,5,6}) > 2 and
x(A;U{2,3,5,6}) > 2, then
x(A;U{0,2,4}) =
X(A,‘ U {1, 3, 5, 6}) = 2.

o If x(A;U{1,2,3}) > 2 and
x(A;U{2,3,5,6}) > 2, then
X(AU{0,1,6}) =
Y(A U {2,3,4,5)) =
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Our results
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Tournaments on 18 vertices

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices.

THOMAS BELLITTO The smallest 5-chromatic tournament Wednesday June 04, 2025 20 / 22



Our results
[ ]

Tournaments on 18 vertices

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TTs

@ We build all the 3-chromatic 8-vertex tournaments we
can by joining (3 and TTs.

@ We build all the 4-chromatic 13-vertex tournaments we
can by joining (3 and 2 TTs.

@ We cannot build any 5-chromatic 18-vertex tournaments
by joining C3 and 3 TTs.
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Tournaments on 18 vertices

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TTs

@ We build all the 3-chromatic 8-vertex tournaments we
can by joining (3 and TTs.
@ We build all the 4-chromatic 13-vertex tournaments we
can by joining (3 and 2 TTs.
@ We cannot build any 5-chromatic 18-vertex tournaments
by joining C3 and 3 TTs.
If T has 2 disjoint TTs

@ Same idea as previous section but B induces one of the
94 3-chromatic 8-vertex T Ts-free tournaments.
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ts on 19 vertices

A 5-chromatic tournament on 19 vertices
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A 5-chromatic tournament on 19 vertices
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A 5-chromatic tournament on 19 vertices













Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices
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Our results
[ ]

Conclusion

Perspectives

@ Elegant proof that there are no vertex-critical tournament
on 12 vertices.

@ Counting/enumerating the 5-chromatic 19-vertex
tournaments?

on6?
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Our results
[ ]

Conclusion

Perspectives

@ Elegant proof that there are no vertex-critical tournament
on 12 vertices.

@ Counting/enumerating the 5-chromatic 19-vertex
tournaments?

on6?

Thank you!
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