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Ramsey’s problem

Complete graph where every edge is either red or blue.

5 vertices

no blue triangle

no red triangle

6 vertices

always a blue or

a red triangle

v
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Ramsey’s theorem

Ramsey’s theorem (1930)

For all k, there exists Rk such that every complete
2-edge-colored graph with at least Rk vertices admits a
monochromatic clique of size k.

Blue and red edges can be replaced by edges and
non-edges (every graph with 6 vertices either has a clique
or an independant set of size 3).

Ramsey theory: if a structure is big enough, it must have
certain properties.
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Erdős (reported by Spencer in 1990)

“Suppose aliens invade the earth and threaten to obliterate it in a year’s
time unless human beings can find the Ramsey number for red five and
blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If
the aliens demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a preemptive attack.”
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Ramsey numbers

R1 = 1 R2 = 2 R3 = 6 R4 = 18 R5 =?√
2
n

6 Rn 6 4n (Erdős, 1947)

Erdős (reported by Spencer in 1990)

“Suppose aliens invade the earth and threaten to obliterate it in a year’s
time unless human beings can find the Ramsey number for red five and
blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If
the aliens demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a preemptive attack.”

State of the art in 1990: 43 6 R5 6 49 (Geoffrey Exoo,
1989)
R5 6 48 (Angeltveit and McKay, 2017)
R5 6 46 (Angeltveit and McKay, 2024)
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Ramsey numbers

Several fields developed thanks to Ramsey’s problems:

Probabilistic method (Erdős, 1947):
If every edge is blue or red with proba 1/2.
A 5-clique has 10 edges, it is monochromatic with probability
1/29 = 1/512.
A graph with 11 vertices has

(

11
5

)

= 462 cliques of size 5.
Probability to have a monochromatic clique 6 462/512 < 1.
R5 > 12
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Ramsey numbers

Several fields developed thanks to Ramsey’s problems:

Probabilistic method (Erdős, 1947):
If every edge is blue or red with proba 1/2.
A 5-clique has 10 edges, it is monochromatic with probability
1/29 = 1/512.
A graph with 11 vertices has

(

11
5

)

= 462 cliques of size 5.
Probability to have a monochromatic clique 6 462/512 < 1.
R5 > 12

Graph enumeration, graph isomorphism problem, automorphism
detection (NAUTY, McKay)
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Variants

Ra,b. R4,5 = 25 (McKay, Radziszowski, 1995)

Ra,b,c . R3,3,3 = 17

Forbidding other structures than cliques.

Directed Ramsey numbers: edges are oriented instead of
being blue and red. We look for ordered sets instead of
monochromatic cliques.
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Tournaments

Oriented graphs

An oriented graph is a directed graph such that for every pair
of vertices u, v , there is at most one arc between u and v .

Tournaments

A tournament is a directed graph such that for every pair of
vertices u, v , there is exactly one arc between u and v .
A tournament is transitive iff for every arc uv and vw , there
exists an arc uw .
Transitive tournament = Acyclic tournament
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Directed Ramsey Numbers

Theorem (Erdős, Moser, 1964)

For all k, there exists ~Rk such that every tournament with at
least ~Rk vertices admits a transitive set of size k.

~R1 = 1
~R2 = 2
~R3 = 4
~R4 = 8
~R5 = 14
~R6 = 28 (Sanchez-Flores, 1994)

34 6 ~R7 6 47 (Neiman, Mackey, Heule, 2020)
~Rn ∈ Θ(2n) (Erdős, Moser, 1964)
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If n = 4k + 3 is prime, the Paley tournament on n vertices Pn

is the tournament such that there is an arc from i to j iff j − i

is a square mod n.
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Paley tournaments

If n = 4k + 3 is prime, the Paley tournament on n vertices Pn

is the tournament such that there is an arc from i to j iff j − i

is a square mod n.
Example: the squares modulo 7 are 1,4 and 2.
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v3v4
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~R4 > 8
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Directed coloring

Chromatic number

The chromatic number of a graph G is the smallest number
of colors required to assign a color to each vertex of the graph
so that no color class contains an edge.
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Neumann-Lara’s problems (1982)

Conjecture

Every orientation of a planar graph is 2-colorable.

The problem this talk is about

What is the size nk of the smallest oriented graph of
chromatic number k?

Can be restricted to tournaments.
Proper coloring of a tournament = partition into
transitive subtournaments.
Size of the smallest undirected triangle-free graph of
chromatic number k? 11 for k = 4 (Chvátal, 1970), 22
for k = 5 (Jensen, Royle, 1995), open for k > 6, between
32 and 40 (Goedgebeur, 2020).
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State of the art

n2 = 3.

n3 = 7. 4 such tournaments including P7 (no TT4).

Erdős, 1979: maximum dichromatic number of a
tournament on n vertices is Θ( n

log n
).

Neumann-Lara, 1994: n4 = 11.
Only such tournament is P11.

P15 does not exist, P19 and P23 are 4-colorable, P27 does
not exist.

Conjecture (Neumann-Lara, 1994)

n5 = 17

“I know that 17 6 n5 6 19.”
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Can we brutefoce it?

Up to isomorphisms, there are

244912778438520759443245824 (27 digits) tournaments
on 17 vertices;

1783398846284777975419600287232 (31 digits)
tournaments on 18 vertices;

24605641171260376770598003978281472 (35 digits)
tournaments on 19 vertices.

Enumerating them up to isomorphisms is difficult.
We have to solve an NP-complete problem on each of them.
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Tournaments on 12 vertices

1 Introduction: Ramsey theory

2 Our problem

3 Our results
Tournaments on 12 vertices
Tournaments on 17 vertices
Tournaments on 18 vertices
Tournaments on 19 vertices
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Tournaments on 12 vertices

Structure

Theorem (Sanchez-Flores, 1998)

There is a unique tournament on 12 vertices that does not
contain a TT5 and it is 3-chromatic.

Consequence

In every 4-chromatic tournament on 12 vertices, there is a
TT5 whose removal yields one of the four 3-chromatic
tournament on 7 vertices.
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Tournaments on 12 vertices

Results

Theorem (Bellitto, Bousquet, Kabela, Pierron)

Every 4-chromatic tournament on 12 vertices :

contains P11;

is a junction of TT5 and W1 (the 3-chromatic 7-vertex
tournament contained by P11).

There are 3-chromatic tournaments on 8 vertices that do not
contain any 3-chromatic tournaments on 7 vertices.
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Tournaments on 12 vertices

Computer assisted proof
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Tournaments on 17 vertices

Outline of the proof

Structure of the graph

If T is a 5-chromatic tournament on 17 vertices, then we can
partition its vertices into A1, A2 and B such that

A1 and A2 induce two copies of TT5

B induces a copy of W1
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Tournaments on 17 vertices

Outline of the proof

Structure of the graph

If T is a 5-chromatic tournament on 17 vertices, then we can
partition its vertices into A1, A2 and B such that

A1 and A2 induce two copies of TT5

B induces a copy of W1

41 arcs decided, 95 left to go...

Idea

Can we partition B into B1 and B2 such that the tournaments
induced by A1 ∪ B1 and A2 ∪ B2 are 2-colorable?
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Tournaments on 17 vertices

0

1

2

36

5

4

χ(Ai ∪ {0, 1, 4}) = 2.

χ(Ai ∪ {0, 1, 2, 3}) = 2
or
χ(Ai ∪ {0, 4, 5, 6}) = 2 .

If χ(Ai ∪ {4, 5, 6}) > 2 and
χ(Ai ∪ {2, 3, 5, 6}) > 2, then
χ(Ai ∪ {0, 2, 4}) =
χ(Ai ∪ {1, 3, 5, 6}) = 2.

If χ(Ai ∪ {1, 2, 3}) > 2 and
χ(Ai ∪ {2, 3, 5, 6}) > 2, then
χ(Ai ∪ {0, 1, 6}) =
χ(Ai ∪ {2, 3, 4, 5}) = 2.
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Introduction: Ramsey theory Our problem Our results

Tournaments on 18 vertices

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices.
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Tournaments on 18 vertices

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TT5

We build all the 3-chromatic 8-vertex tournaments we
can by joining C3 and TT5.

We build all the 4-chromatic 13-vertex tournaments we
can by joining C3 and 2 TT5.

We cannot build any 5-chromatic 18-vertex tournaments
by joining C3 and 3 TT5.
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Tournaments on 18 vertices

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TT5

We build all the 3-chromatic 8-vertex tournaments we
can by joining C3 and TT5.

We build all the 4-chromatic 13-vertex tournaments we
can by joining C3 and 2 TT5.

We cannot build any 5-chromatic 18-vertex tournaments
by joining C3 and 3 TT5.

If T has 2 disjoint TT5

Same idea as previous section but B induces one of the
94 3-chromatic 8-vertex TT5-free tournaments.
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Tournaments on 19 vertices

A 5-chromatic tournament on 19 vertices
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Introduction: Ramsey theory Our problem Our results

Conclusion

Perspectives

Elegant proof that there are no vertex-critical tournament
on 12 vertices.

Counting/enumerating the 5-chromatic 19-vertex
tournaments?

n6 ?

Thomas Bellitto The smallest 5-chromatic tournament Wednesday June 04, 2025 22 / 22



Introduction: Ramsey theory Our problem Our results

Conclusion

Perspectives

Elegant proof that there are no vertex-critical tournament
on 12 vertices.

Counting/enumerating the 5-chromatic 19-vertex
tournaments?

n6 ?

Thank you!
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