

The smallest 5-chromatic tournament

THOMAS BELLITTO

Wednesday June 04, 2025

Sorbonne Université, LIP6, Paris, France

Joint work with

Nicolas Bousquet, Université Lyon 1, LIRIS, France

Adam Kabela, University of West Bohemia, Pilsen, Czech Republic

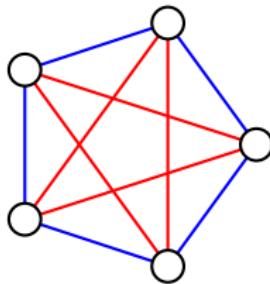
Théo Pierron, Université Lyon 1, LIRIS, France

Ramsey's problem

Complete graph where every edge is either red or blue.

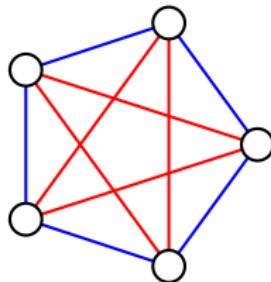
Ramsey's problem

Complete graph where every edge is either red or blue.



Ramsey's problem

Complete graph where every edge is either red or blue.



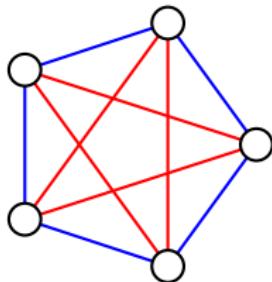
5 vertices

no blue triangle

no red triangle

Ramsey's problem

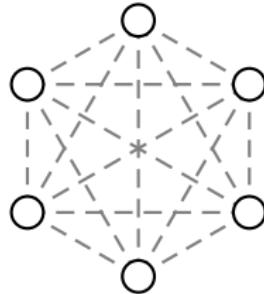
Complete graph where every edge is either red or blue.



5 vertices

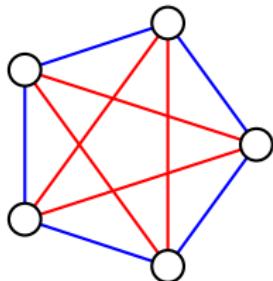
no blue triangle

no red triangle

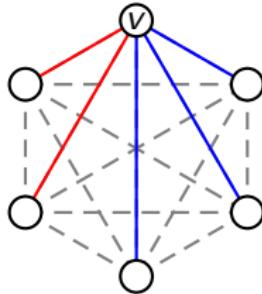


Ramsey's problem

Complete graph where every edge is either red or blue.

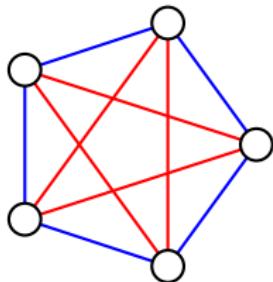


5 vertices
no blue triangle
no red triangle



Ramsey's problem

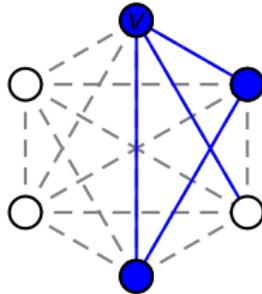
Complete graph where every edge is either red or blue.



5 vertices

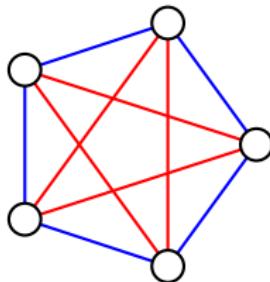
no blue triangle

no red triangle



Ramsey's problem

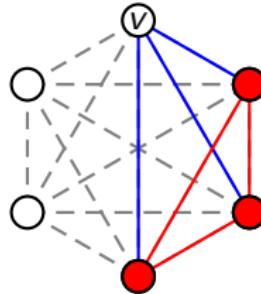
Complete graph where every edge is either red or blue.



5 vertices

no blue triangle

no red triangle



6 vertices

always a blue or

a red triangle

Ramsey's theorem

Ramsey's theorem (1930)

For all k , there exists R_k such that every complete 2-edge-colored graph with at least R_k vertices admits a monochromatic clique of size k .

Ramsey's theorem

Ramsey's theorem (1930)

For all k , there exists R_k such that every complete 2-edge-colored graph with at least R_k vertices admits a monochromatic clique of size k .

- Blue and red edges can be replaced by edges and non-edges (every graph with 6 vertices either has a clique or an independant set of size 3).

Ramsey's theorem

Ramsey's theorem (1930)

For all k , there exists R_k such that every complete 2-edge-colored graph with at least R_k vertices admits a monochromatic clique of size k .

- Blue and red edges can be replaced by edges and non-edges (every graph with 6 vertices either has a clique or an independant set of size 3).
- Ramsey theory: if a structure is big enough, it must have certain properties.

Ramsey numbers

- $R_1 = 1$ $R_2 = 2$

Ramsey numbers

- $R_1 = 1$ $R_2 = 2$ $R_3 = 6$

Ramsey numbers

- $R_1 = 1 \quad R_2 = 2 \quad R_3 = 6 \quad R_4 = 18$

Ramsey numbers

- $R_1 = 1 \quad R_2 = 2 \quad R_3 = 6 \quad R_4 = 18 \quad R_5 = ?$

Ramsey numbers

- $R_1 = 1 \quad R_2 = 2 \quad R_3 = 6 \quad R_4 = 18 \quad R_5 = ?$
- $\sqrt{2}^n \leq R_n \leq 4^n$ (Erdős, 1947)

Ramsey numbers

- $R_1 = 1 \quad R_2 = 2 \quad R_3 = 6 \quad R_4 = 18 \quad R_5 = ?$
- $\sqrt{2}^n \leq R_n \leq 4^n$ (Erdős, 1947)

Erdős (reported by Spencer in 1990)

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world’s best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.”

Ramsey numbers

- $R_1 = 1 \quad R_2 = 2 \quad R_3 = 6 \quad R_4 = 18 \quad R_5 = ?$
- $\sqrt{2}^n \leq R_n \leq 4^n$ (Erdős, 1947)

Erdős (reported by Spencer in 1990)

"Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack."

- State of the art in 1990: $43 \leq R_5 \leq 49$ (Geoffrey Exoo, 1989)

Ramsey numbers

- $R_1 = 1 \quad R_2 = 2 \quad R_3 = 6 \quad R_4 = 18 \quad R_5 = ?$
- $\sqrt{2}^n \leq R_n \leq 4^n$ (Erdős, 1947)

Erdős (reported by Spencer in 1990)

"Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack."

- State of the art in 1990: $43 \leq R_5 \leq 49$ (Geoffrey Exoo, 1989)
- $R_5 \leq 48$ (Angeltveit and McKay, 2017)
- $R_5 \leq 46$ (Angeltveit and McKay, 2024)

Ramsey numbers

Several fields developed thanks to Ramsey's problems:

Ramsey numbers

Several fields developed thanks to Ramsey's problems:

- Probabilistic method (Erdős, 1947):
If every edge is blue or red with proba 1/2.
A 5-clique has 10 edges, it is monochromatic with probability
 $1/2^9 = 1/512$.
A graph with 11 vertices has $\binom{11}{5} = 462$ cliques of size 5.
Probability to have a monochromatic clique $\leq 462/512 < 1$.
 $R_5 \geq 12$

Ramsey numbers

Several fields developed thanks to Ramsey's problems:

- Probabilistic method (Erdős, 1947):
If every edge is blue or red with proba 1/2.
A 5-clique has 10 edges, it is monochromatic with probability
 $1/2^9 = 1/512$.
A graph with 11 vertices has $\binom{11}{5} = 462$ cliques of size 5.
Probability to have a monochromatic clique $\leq 462/512 < 1$.
 $R_5 \geq 12$
- Graph enumeration, graph isomorphism problem, automorphism detection (NAUTY, McKay)

Variants

- $R_{a,b}$. $R_{4,5} = 25$ (McKay, Radziszowski, 1995)

Variants

- $R_{a,b}.$ $R_{4,5} = 25$ (McKay, Radziszowski, 1995)
- $R_{a,b,c}.$ $R_{3,3,3} = 17$

Variants

- $R_{a,b}$. $R_{4,5} = 25$ (McKay, Radziszowski, 1995)
- $R_{a,b,c}$. $R_{3,3,3} = 17$
- Forbidding other structures than cliques.

Variants

- $R_{a,b}$. $R_{4,5} = 25$ (McKay, Radziszowski, 1995)
- $R_{a,b,c}$. $R_{3,3,3} = 17$
- Forbidding other structures than cliques.
- Directed Ramsey numbers: edges are oriented instead of being blue and red. We look for ordered sets instead of monochromatic cliques.

Tournaments

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

A tournament is a directed graph such that for every pair of vertices u, v , there is **exactly one** arc between u and v .

Tournaments

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

A tournament is a directed graph such that for every pair of vertices u, v , there is **exactly one** arc between u and v .

A tournament is **transitive** iff for every arc uv and vw , there exists an arc uw .

Tournaments

Oriented graphs

An oriented graph is a directed graph such that for every pair of vertices u, v , there is **at most one** arc between u and v .

Tournaments

A tournament is a directed graph such that for every pair of vertices u, v , there is **exactly one** arc between u and v .

A tournament is **transitive** iff for every arc uv and vw , there exists an arc uw .

Transitive tournament = Acyclic tournament

Directed Ramsey Numbers

Theorem (Erdős, Moser, 1964)

For all k , there exists \vec{R}_k such that every tournament with at least \vec{R}_k vertices admits a transitive set of size k .

- $\vec{R}_1 = 1$
- $\vec{R}_2 = 2$
- $\vec{R}_3 = 4$
- $\vec{R}_4 = 8$
- $\vec{R}_5 = 14$
- $\vec{R}_6 = 28$ (Sanchez-Flores, 1994)
- $34 \leq \vec{R}_7 \leq 47$ (Neiman, Mackey, Heule, 2020)
- $\vec{R}_n \in \Theta(2^n)$ (Erdős, Moser, 1964)

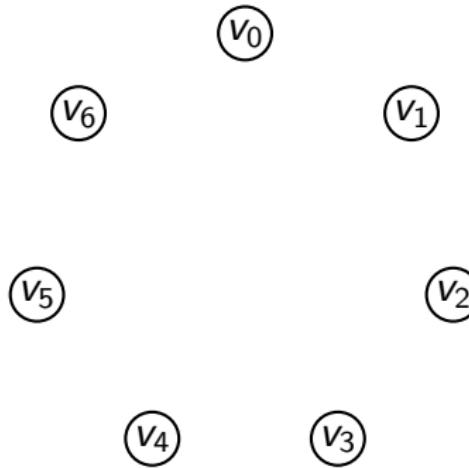
Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square $\pmod n$.

Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

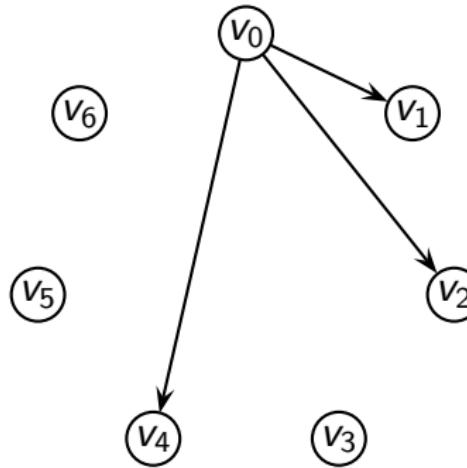
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

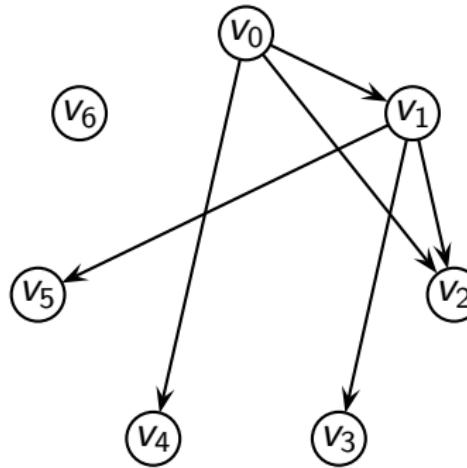
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

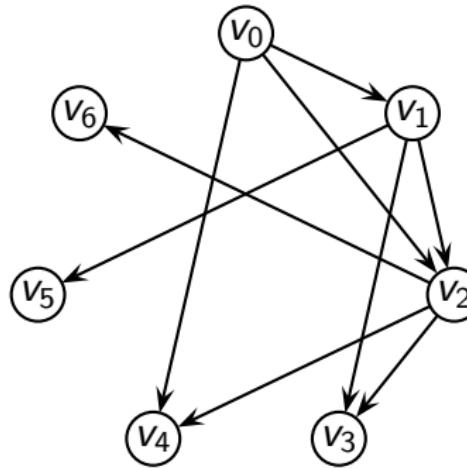
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

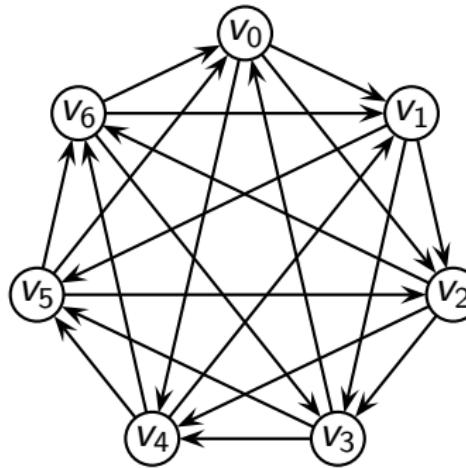
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

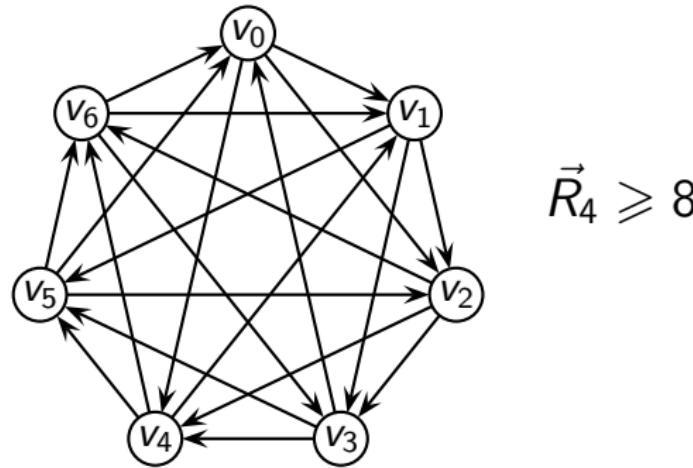
Example: the squares modulo 7 are 1, 4 and 2.



Paley tournaments

If $n = 4k + 3$ is prime, the Paley tournament on n vertices P_n is the tournament such that there is an arc from i to j iff $j - i$ is a square mod n .

Example: the squares modulo 7 are 1, 4 and 2.



Directed coloring

Chromatic number

The chromatic number of a graph G is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains an edge.

Directed coloring

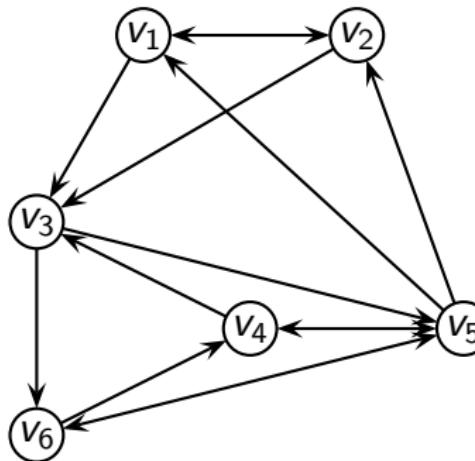
Directed chromatic number (Neumann-Lara, 1982)

The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.

Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

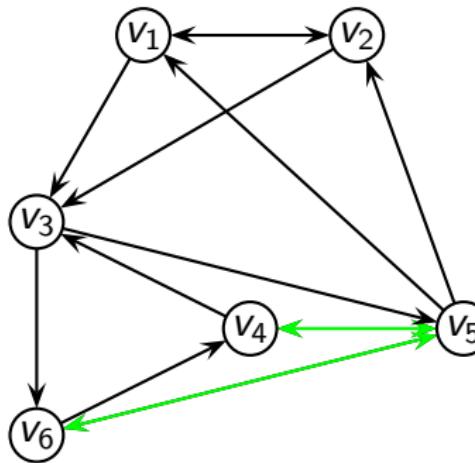
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

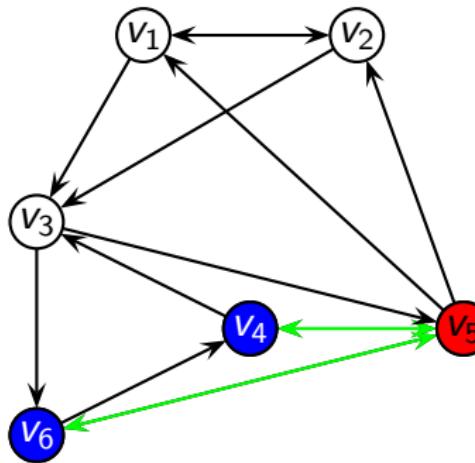
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

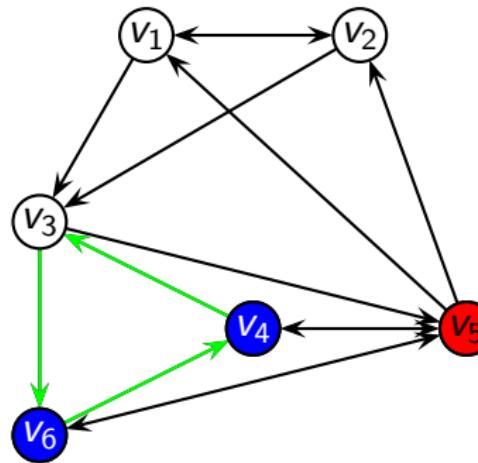
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

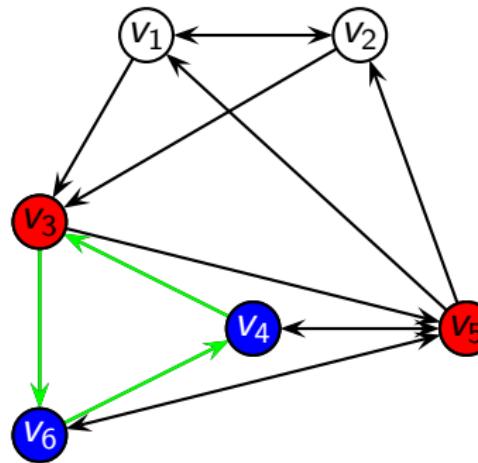
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

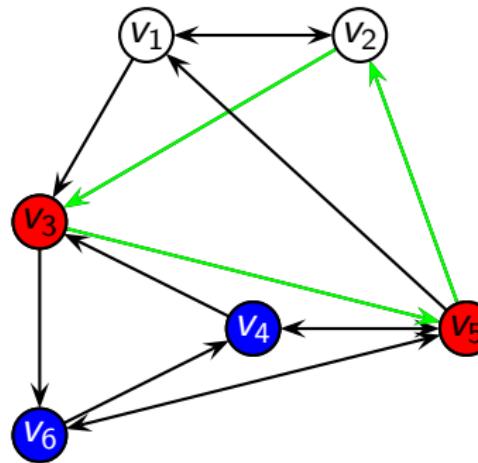
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

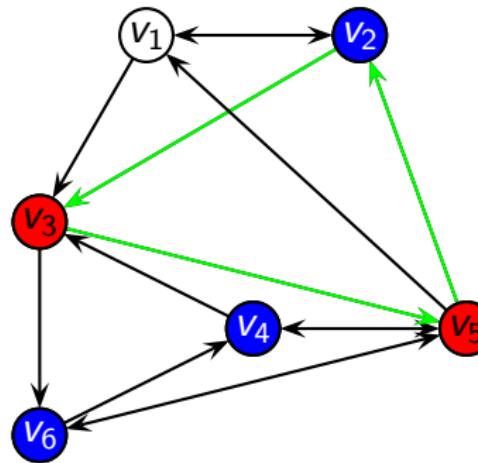
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

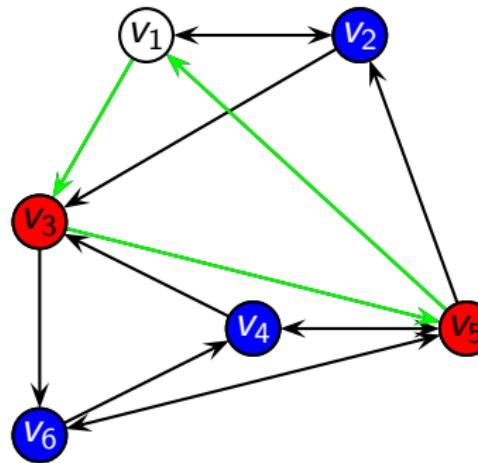
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

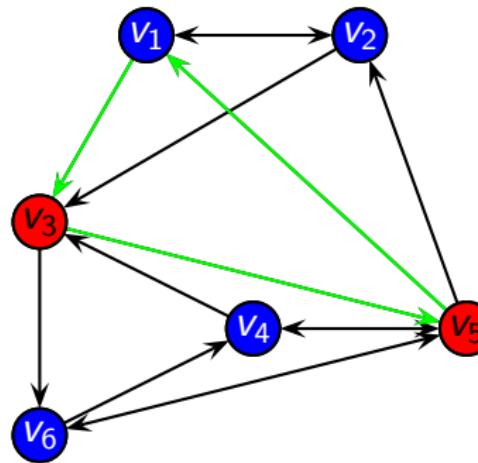
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

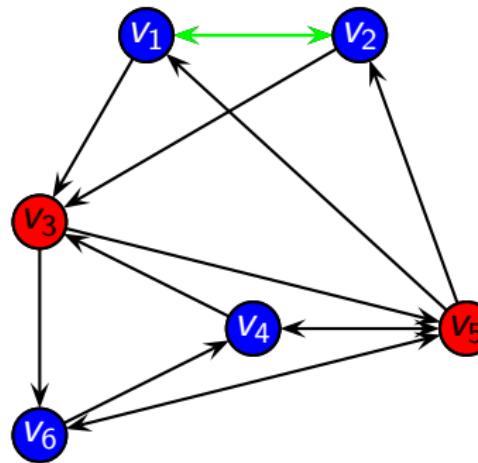
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

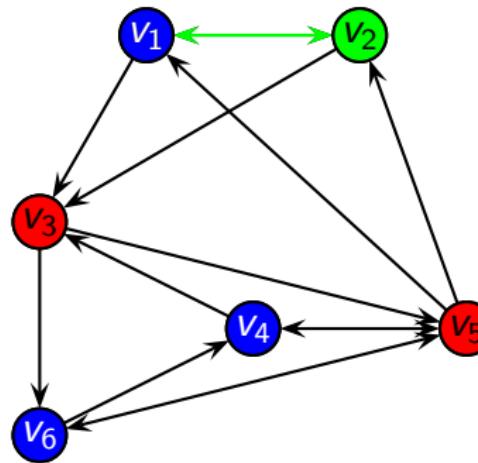
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

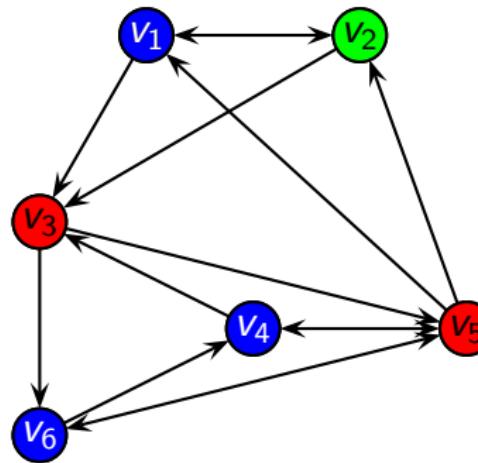
The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Directed coloring

Directed chromatic number (Neumann-Lara, 1982)

The **directed** chromatic number of a **digraph D** is the smallest number of colors required to assign a color to each vertex of the graph so that no color class contains a **closed walk**.



Neumann-Lara's problems (1982)

Conjecture

Every orientation of a planar graph is 2-colorable.

Neumann-Lara's problems (1982)

Conjecture

Every orientation of a planar graph is 2-colorable.

The problem this talk is about

What is the size n_k of the smallest oriented graph of chromatic number k ?

Neumann-Lara's problems (1982)

Conjecture

Every orientation of a planar graph is 2-colorable.

The problem this talk is about

What is the size n_k of the smallest oriented graph of chromatic number k ?

- Can be restricted to tournaments.

Neumann-Lara's problems (1982)

Conjecture

Every orientation of a planar graph is 2-colorable.

The problem this talk is about

What is the size n_k of the smallest oriented graph of chromatic number k ?

- Can be restricted to tournaments.
- Proper coloring of a tournament = partition into transitive subtournaments.

Neumann-Lara's problems (1982)

Conjecture

Every orientation of a planar graph is 2-colorable.

The problem this talk is about

What is the size n_k of the smallest oriented graph of chromatic number k ?

- Can be restricted to tournaments.
- Proper coloring of a tournament = partition into transitive subtournaments.
- Size of the smallest undirected triangle-free graph of chromatic number k ? 11 for $k = 4$ (Chvátal, 1970), 22 for $k = 5$ (Jensen, Royle, 1995), open for $k \geq 6$, between 32 and 40 (Goedgebeur, 2020).

State of the art

- $n_2 = 3$.

State of the art

- $n_2 = 3$.
- $n_3 = 7$. 4 such tournaments including P_7 (no TT_4).

State of the art

- $n_2 = 3$.
- $n_3 = 7$. 4 such tournaments including P_7 (no TT_4).
- Erdős, 1979: maximum dichromatic number of a tournament on n vertices is $\Theta(\frac{n}{\log n})$.

State of the art

- $n_2 = 3$.
- $n_3 = 7$. 4 such tournaments including P_7 (no TT_4).
- Erdős, 1979: maximum dichromatic number of a tournament on n vertices is $\Theta(\frac{n}{\log n})$.
- Neumann-Lara, 1994: $n_4 = 11$.
Only such tournament is P_{11} .

State of the art

- $n_2 = 3$.
- $n_3 = 7$. 4 such tournaments including P_7 (no TT_4).
- Erdős, 1979: maximum dichromatic number of a tournament on n vertices is $\Theta(\frac{n}{\log n})$.
- Neumann-Lara, 1994: $n_4 = 11$.
Only such tournament is P_{11} .
- P_{15} does not exist, P_{19} and P_{23} are 4-colorable, P_{27} does not exist.

State of the art

- $n_2 = 3$.
- $n_3 = 7$. 4 such tournaments including P_7 (no TT_4).
- Erdős, 1979: maximum dichromatic number of a tournament on n vertices is $\Theta(\frac{n}{\log n})$.
- Neumann-Lara, 1994: $n_4 = 11$.
Only such tournament is P_{11} .
- P_{15} does not exist, P_{19} and P_{23} are 4-colorable, P_{27} does not exist.

Conjecture (Neumann-Lara, 1994)

$$n_5 = 17$$

State of the art

- $n_2 = 3$.
- $n_3 = 7$. 4 such tournaments including P_7 (no TT_4).
- Erdős, 1979: maximum dichromatic number of a tournament on n vertices is $\Theta(\frac{n}{\log n})$.
- Neumann-Lara, 1994: $n_4 = 11$.
Only such tournament is P_{11} .
- P_{15} does not exist, P_{19} and P_{23} are 4-colorable, P_{27} does not exist.

Conjecture (Neumann-Lara, 1994)

$$n_5 = 17$$

“I know that $17 \leq n_5 \leq 19$.”

Can we brute force it?

Up to isomorphisms, there are

- 244912778438520759443245824 (27 digits) tournaments on 17 vertices;
- 1783398846284777975419600287232 (31 digits) tournaments on 18 vertices;
- 24605641171260376770598003978281472 (35 digits) tournaments on 19 vertices.

Enumerating them up to isomorphisms is difficult.

We have to solve an NP-complete problem on each of them.

1 Introduction: Ramsey theory

2 Our problem

3 Our results

- Tournaments on 12 vertices
- Tournaments on 17 vertices
- Tournaments on 18 vertices
- Tournaments on 19 vertices

Structure

Theorem (Sanchez-Flores, 1998)

There is a unique tournament on 12 vertices that does not contain a TT_5 and it is 3-chromatic.

Consequence

In every 4-chromatic tournament on 12 vertices, there is a TT_5 whose removal yields one of the four 3-chromatic tournaments on 7 vertices.

Results

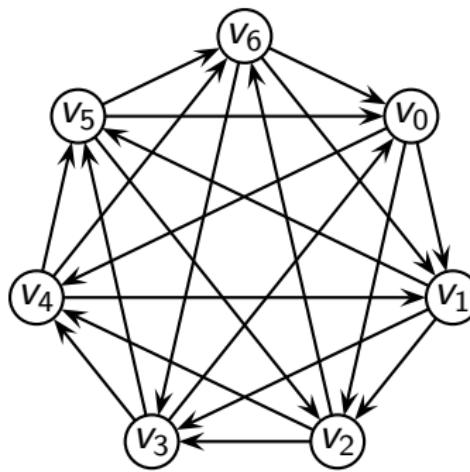
Theorem (Bellitto, Bousquet, Kabela, Pierron)

Every 4-chromatic tournament on 12 vertices :

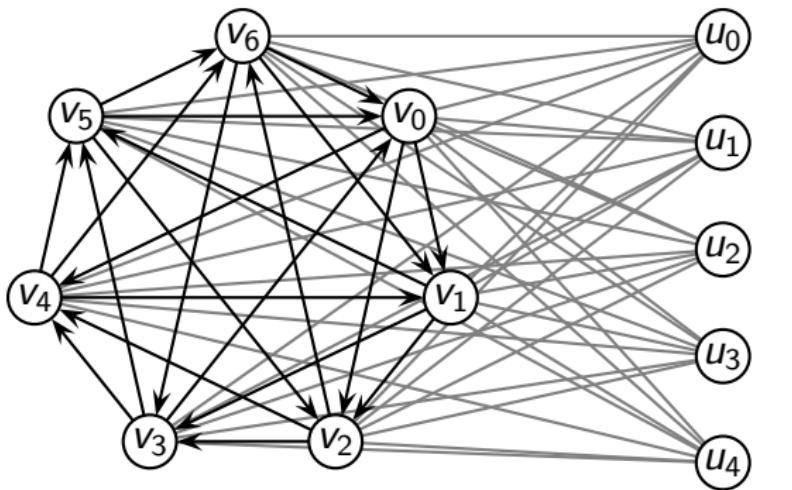
- contains P_{11} ;
- is a junction of TT_5 and W_1 (the 3-chromatic 7-vertex tournament contained by P_{11}).

There are 3-chromatic tournaments on 8 vertices that do not contain any 3-chromatic tournaments on 7 vertices.

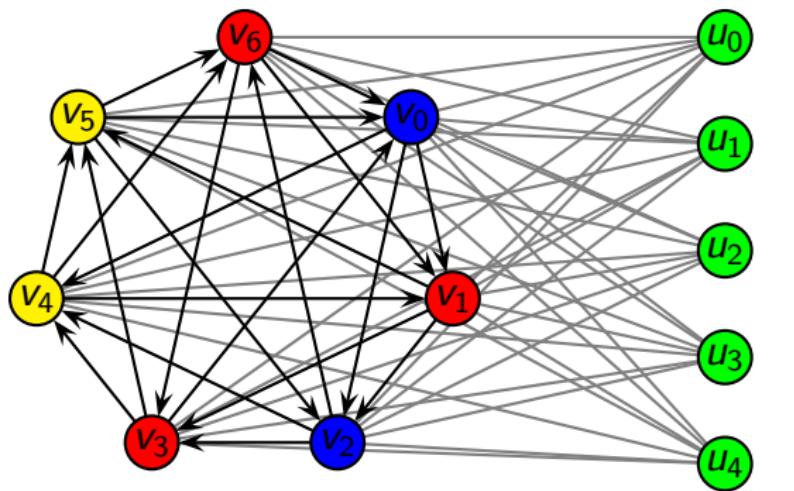
Computer assisted proof

 P_7  TT_5

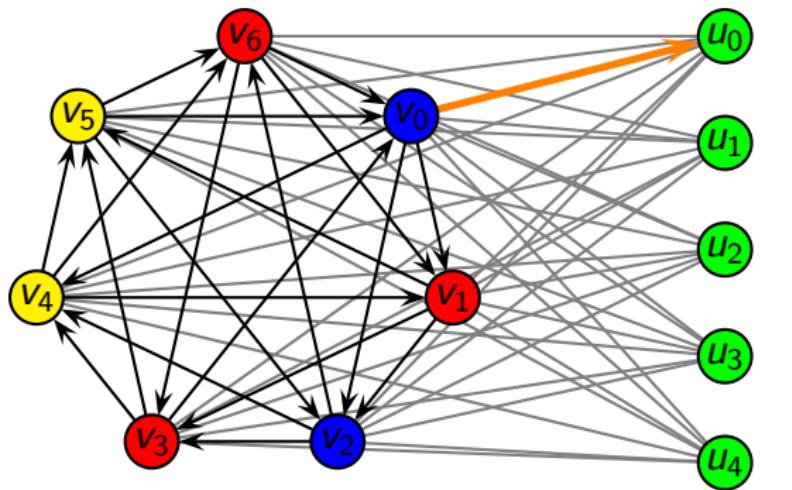
Computer assisted proof

 P_7 TT_5 

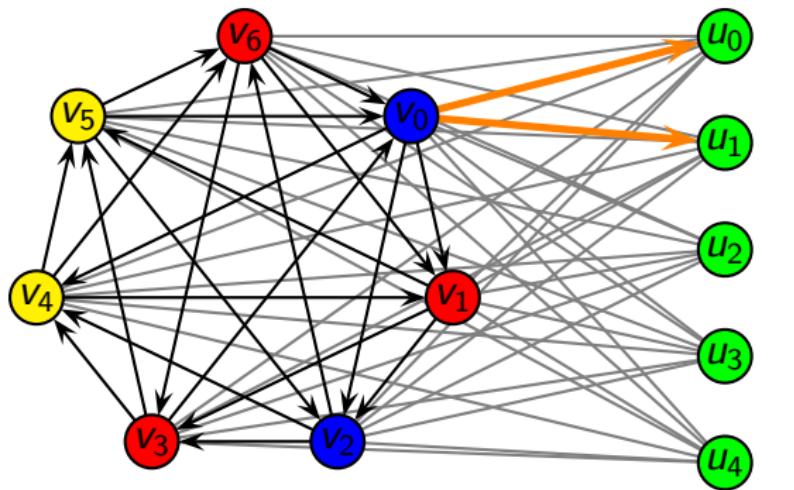
Computer assisted proof

 P_7 TT_5 

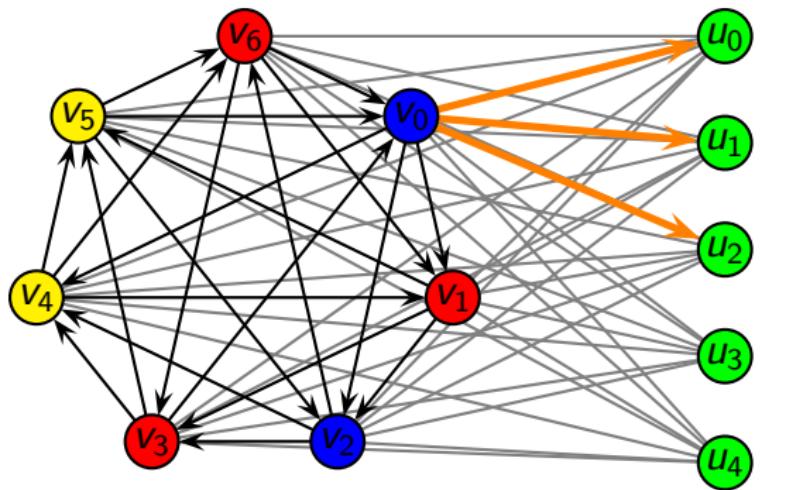
Computer assisted proof

 P_7 TT_5 

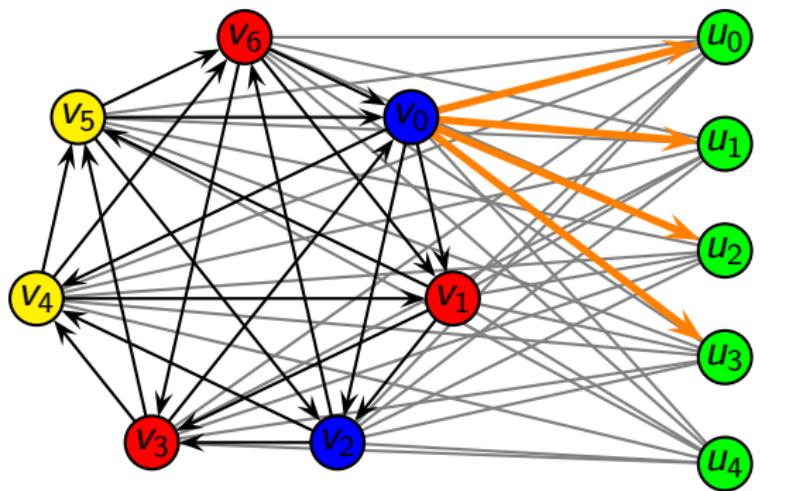
Computer assisted proof

 P_7 TT_5 

Computer assisted proof

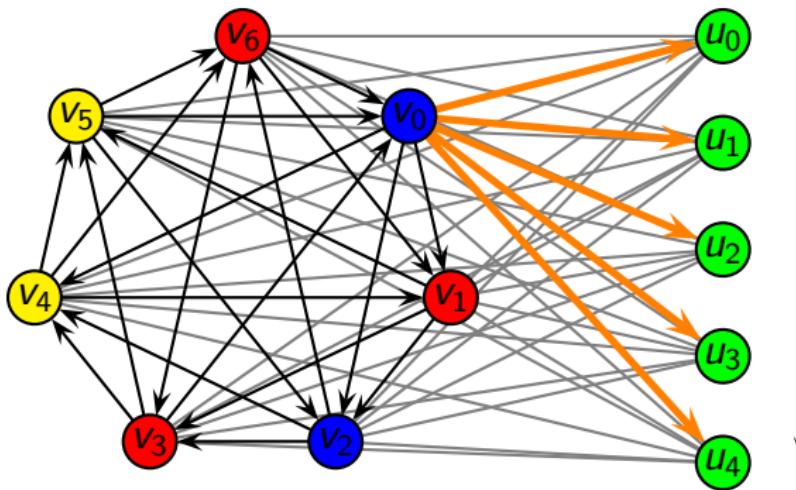
 P_7 TT_5 

Computer assisted proof

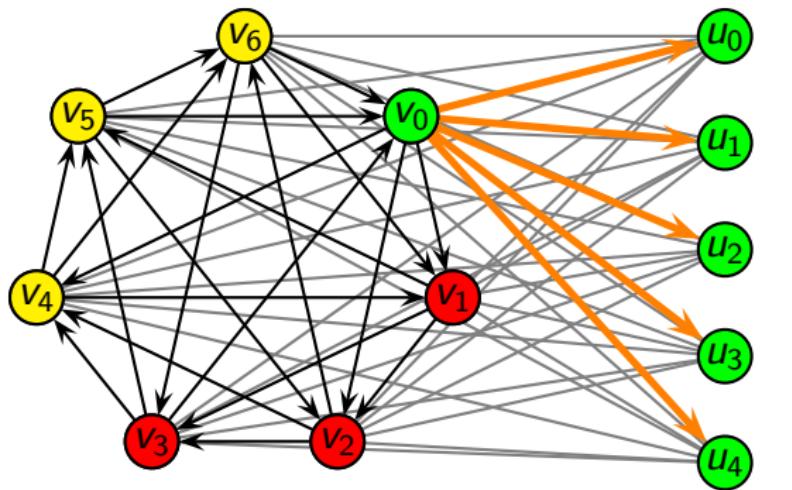
 P_7 TT_5 

Tournaments on 12 vertices

Computer assisted proof

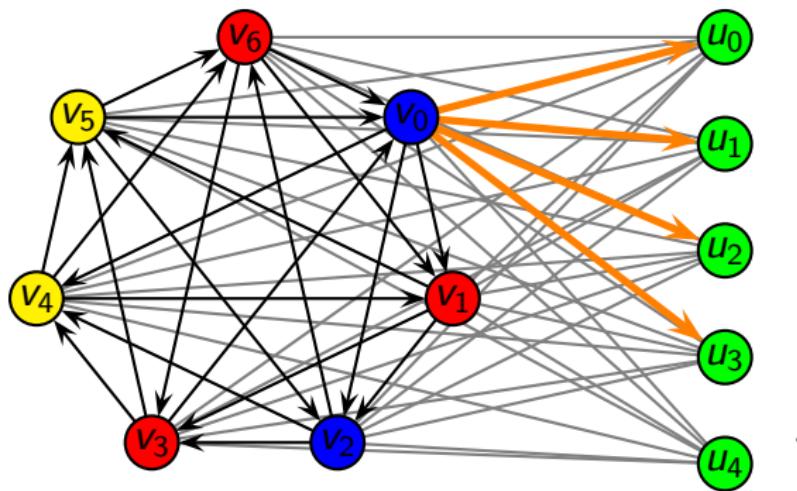
 P_7 TT_5 

Computer assisted proof

 P_7 TT_5 

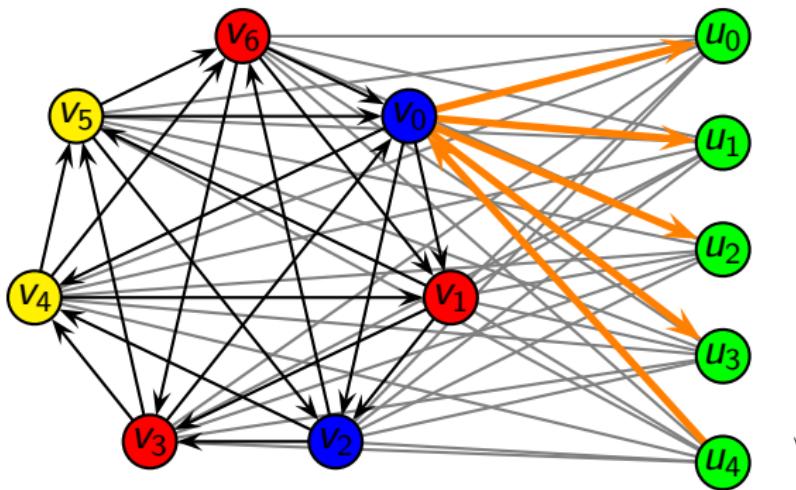
Tournaments on 12 vertices

Computer assisted proof

 P_7 TT_5 

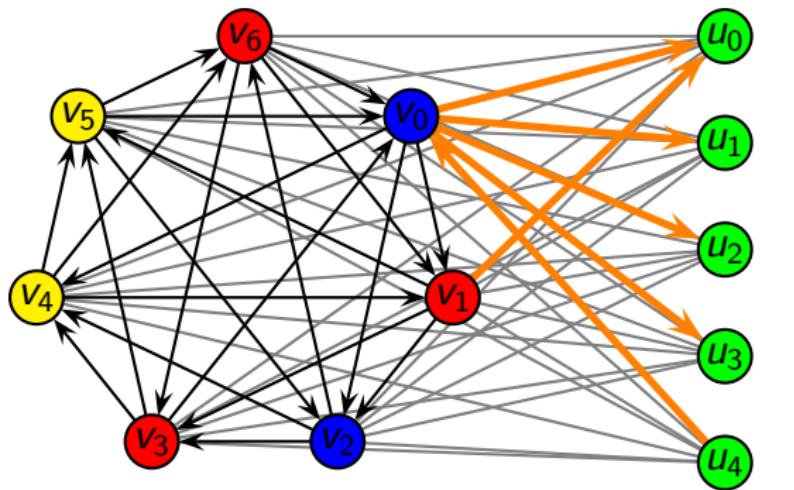
Tournaments on 12 vertices

Computer assisted proof

 P_7 TT_5 

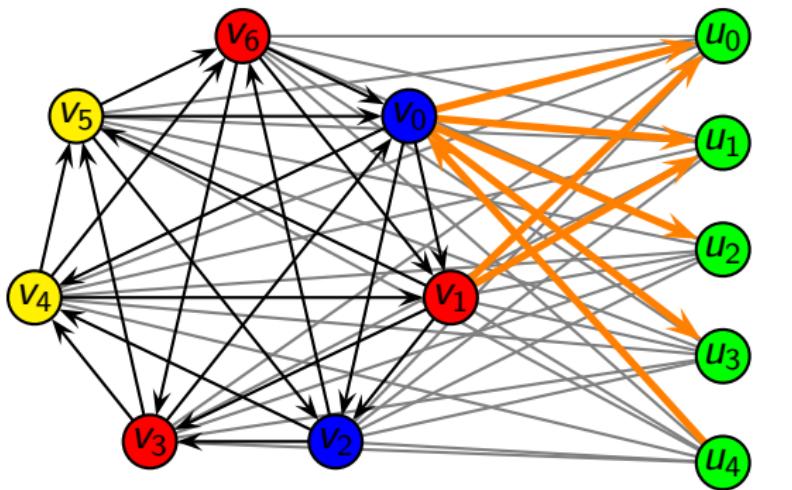
Tournaments on 12 vertices

Computer assisted proof

 P_7 TT_5 

Tournaments on 12 vertices

Computer assisted proof

 P_7 TT_5 

Outline of the proof

Structure of the graph

If T is a 5-chromatic tournament on 17 vertices, then we can partition its vertices into A_1 , A_2 and B such that

- A_1 and A_2 induce two copies of TT_5
- B induces a copy of W_1

Outline of the proof

Structure of the graph

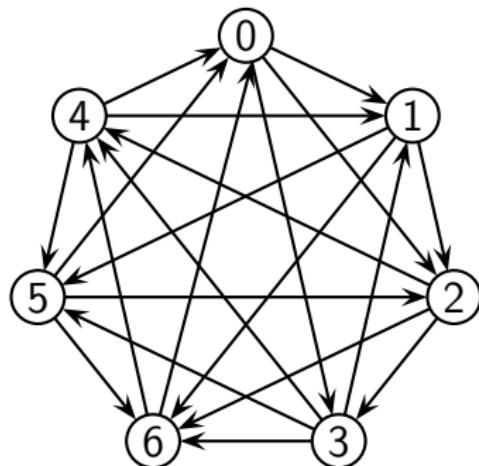
If T is a 5-chromatic tournament on 17 vertices, then we can partition its vertices into A_1 , A_2 and B such that

- A_1 and A_2 induce two copies of TT_5
- B induces a copy of W_1

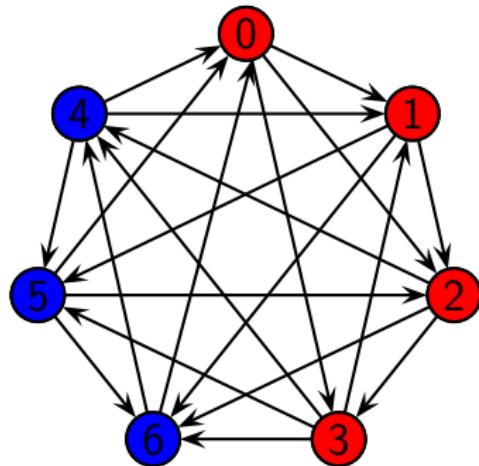
41 arcs decided, 95 left to go...

Idea

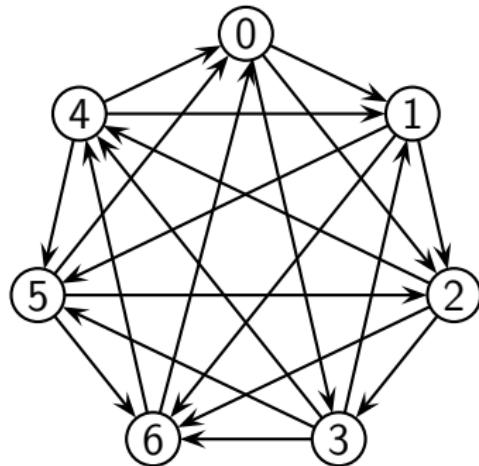
Can we partition B into B_1 and B_2 such that the tournaments induced by $A_1 \cup B_1$ and $A_2 \cup B_2$ are 2-colorable?



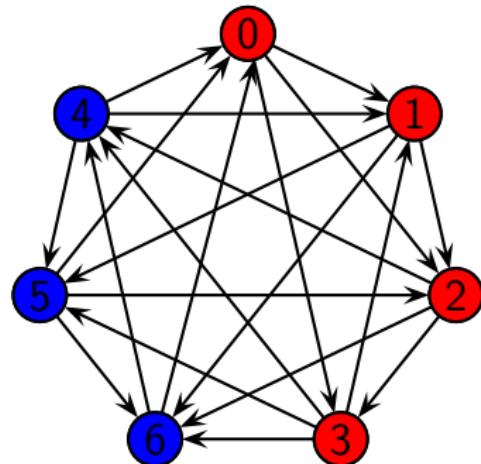
- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.



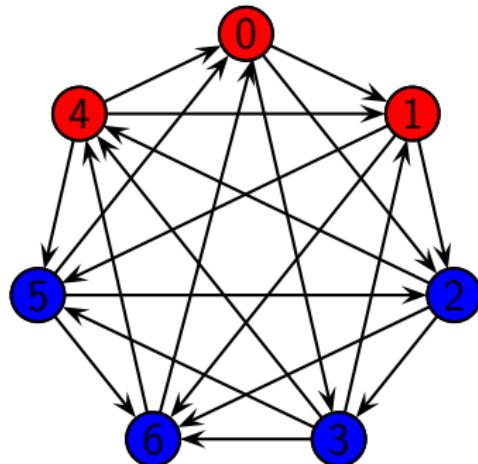
- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2 A_1$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2 A_2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.



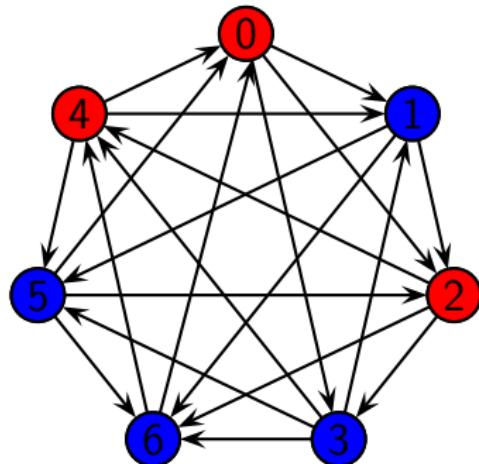
- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ $\textcolor{red}{A_1}$ $\textcolor{blue}{A_2}$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.



- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ A_1 A_2
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.



- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ A_1 A_2
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 2, 4\}) =$
 $\chi(A_i \cup \{1, 3, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and
 $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\chi(A_i \cup \{0, 1, 6\}) =$
 $\chi(A_i \cup \{2, 3, 4, 5\}) = 2$.



- $\chi(A_i \cup \{0, 1, 4\}) = 2$.
- $\chi(A_i \cup \{0, 1, 2, 3\}) = 2$ $\textcolor{red}{A_1}$ $\textcolor{blue}{A_2}$
or
 $\chi(A_i \cup \{0, 4, 5, 6\}) = 2$.
- If $\chi(A_i \cup \{4, 5, 6\}) > 2$ and $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\textcolor{red}{\chi(A_i \cup \{0, 2, 4\})} =$
 $\textcolor{blue}{\chi(A_i \cup \{1, 3, 5, 6\})} = 2$.
- If $\chi(A_i \cup \{1, 2, 3\}) > 2$ and $\chi(A_i \cup \{2, 3, 5, 6\}) > 2$, then
 $\textcolor{red}{\chi(A_i \cup \{0, 1, 6\})} =$
 $\textcolor{blue}{\chi(A_i \cup \{2, 3, 4, 5\})} = 2$.

Combines ideas from the previous sections
Let T be 5-chromatic on 18 vertices.

Combines ideas from the previous sections

Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TT_5

- We build all the 3-chromatic 8-vertex tournaments we can by joining C_3 and TT_5 .
- We build all the 4-chromatic 13-vertex tournaments we can by joining C_3 and 2 TT_5 .
- We cannot build any 5-chromatic 18-vertex tournaments by joining C_3 and 3 TT_5 .

Combines ideas from the previous sections

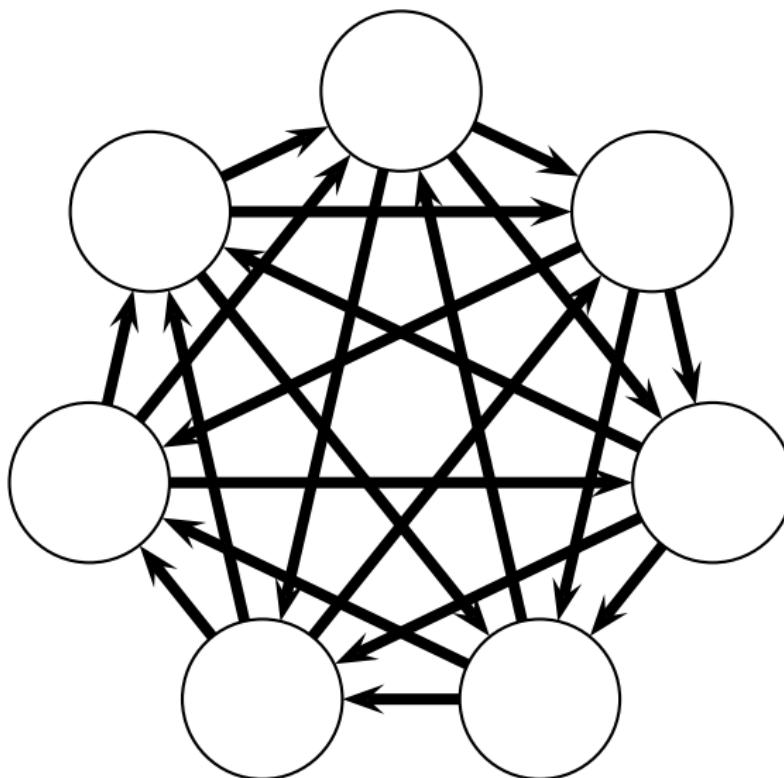
Let T be 5-chromatic on 18 vertices. If T has 3 disjoint TT_5

- We build all the 3-chromatic 8-vertex tournaments we can by joining C_3 and TT_5 .
- We build all the 4-chromatic 13-vertex tournaments we can by joining C_3 and 2 TT_5 .
- We cannot build any 5-chromatic 18-vertex tournaments by joining C_3 and 3 TT_5 .

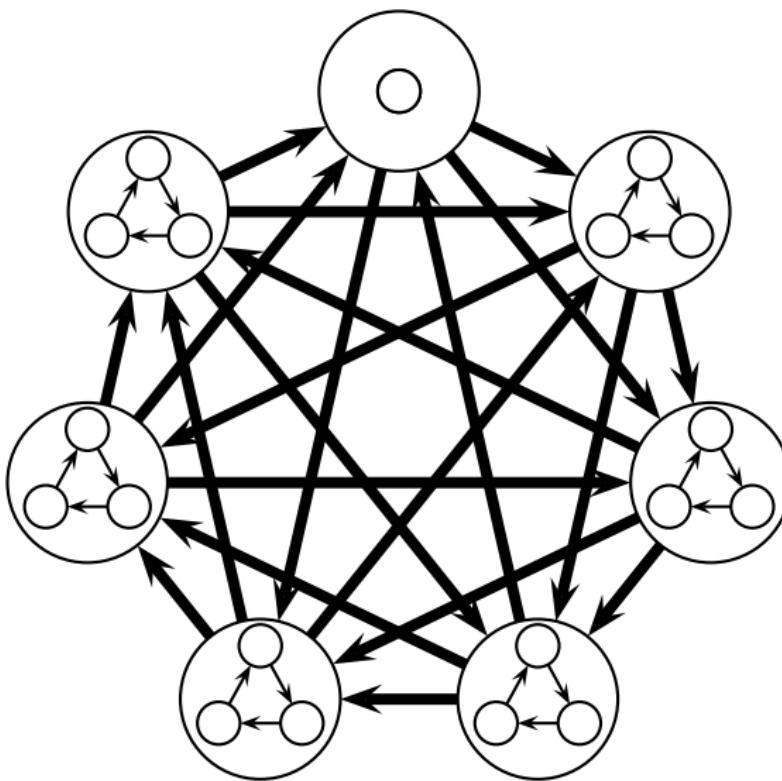
If T has 2 disjoint TT_5

- Same idea as previous section but B induces one of the 94 3-chromatic 8-vertex TT_5 -free tournaments.

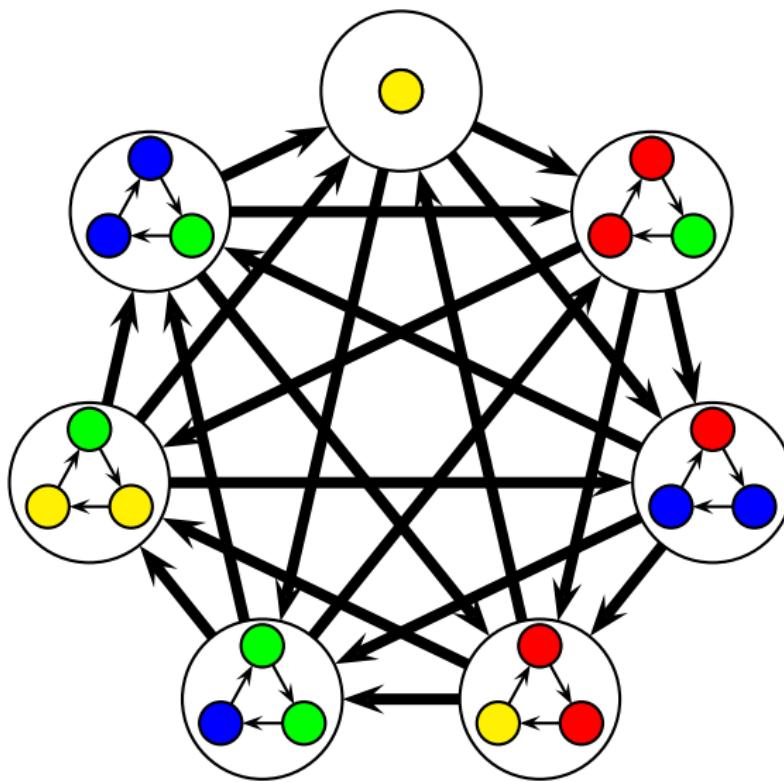
A 5-chromatic tournament on 19 vertices



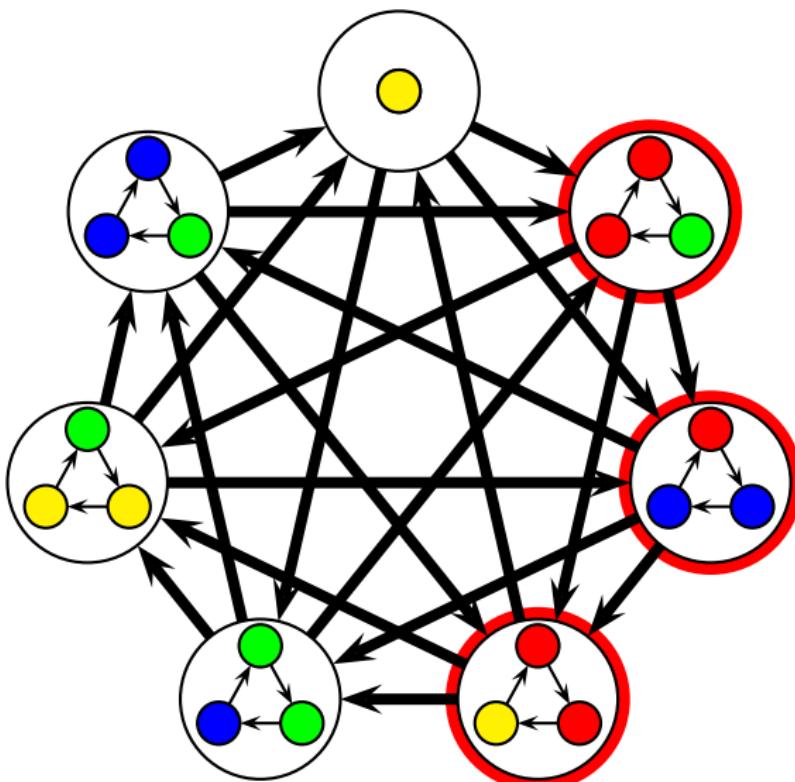
A 5-chromatic tournament on 19 vertices



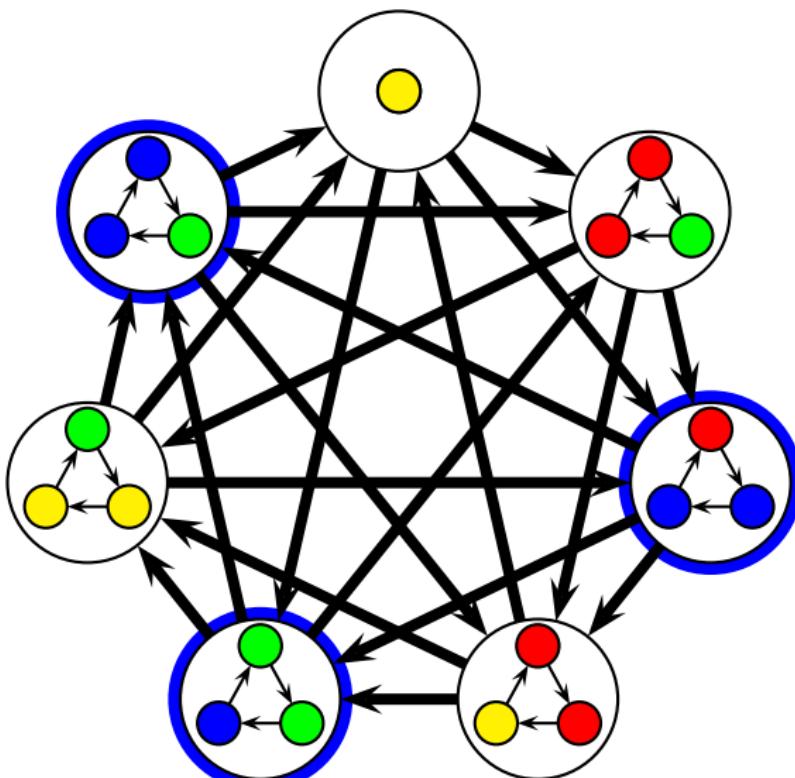
A 5-chromatic tournament on 19 vertices



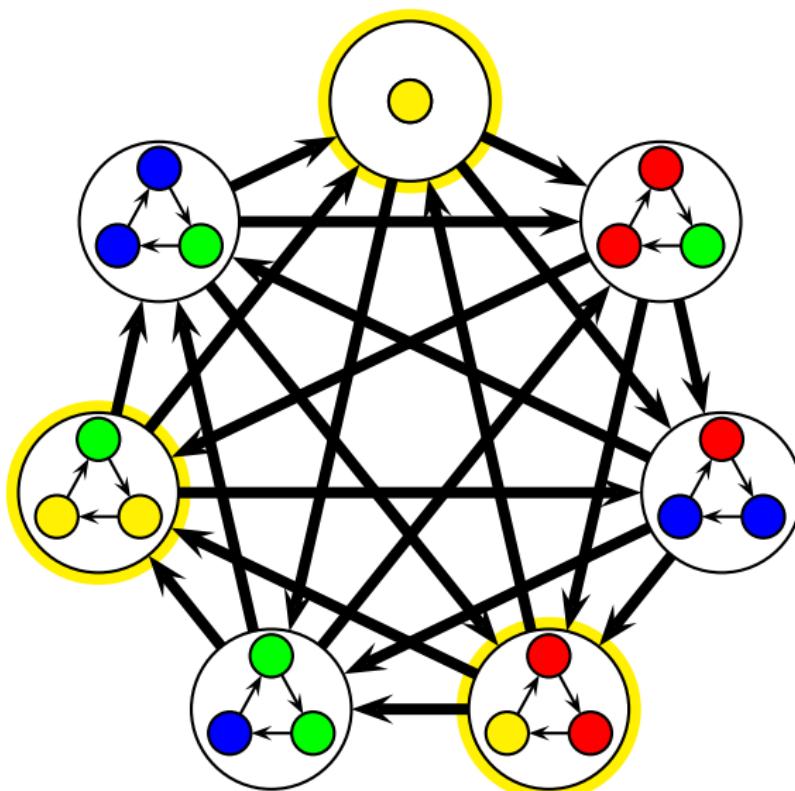
A 5-chromatic tournament on 19 vertices



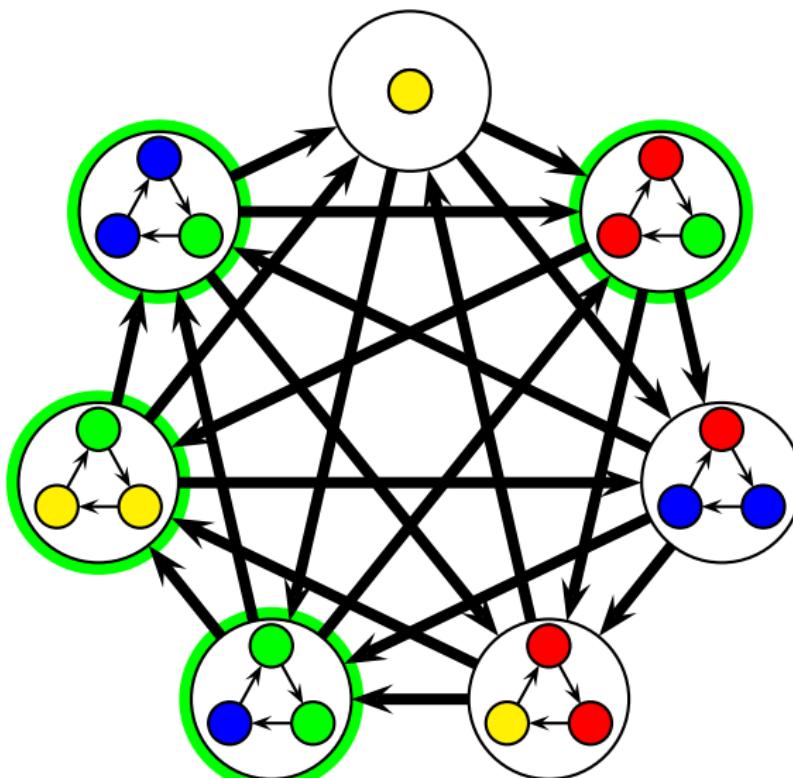
A 5-chromatic tournament on 19 vertices



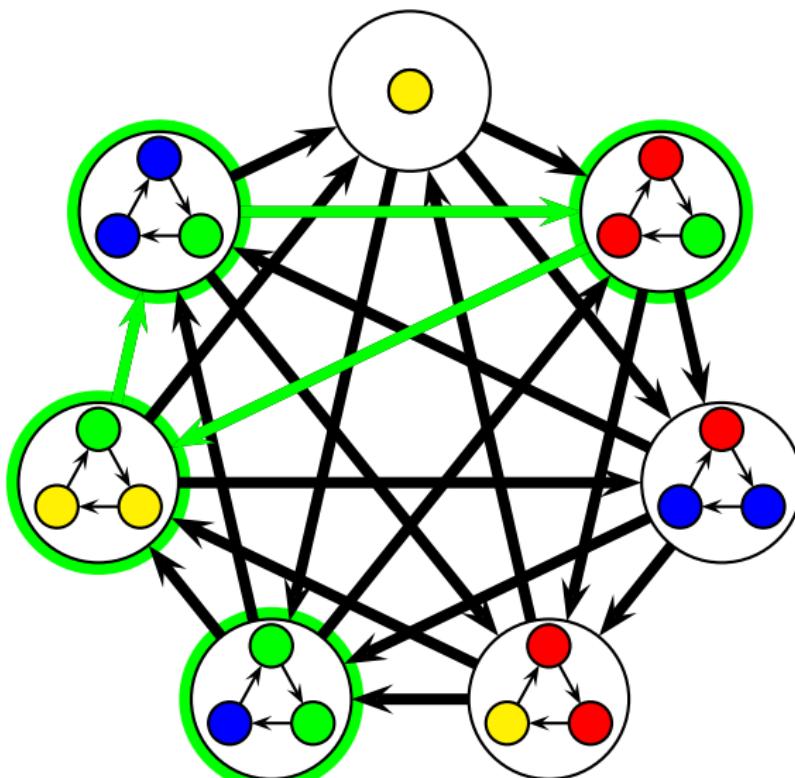
A 5-chromatic tournament on 19 vertices



A 5-chromatic tournament on 19 vertices



A 5-chromatic tournament on 19 vertices



Perspectives

- Elegant proof that there are no vertex-critical tournament on 12 vertices.
- Counting/enumerating the 5-chromatic 19-vertex tournaments?
- n_6 ?

Perspectives

- Elegant proof that there are no vertex-critical tournament on 12 vertices.
- Counting/enumerating the 5-chromatic 19-vertex tournaments?
- n_6 ?

Thank you!