

Restless exploration of periodic temporal graphs

Thomas Bellitto¹ Cyril Conchon-Kerjan²
Bruno Escoffier^{1,3}

Monday, June 19, 2023

1 : Sorbonne Université, LIP6, Paris, France

2 : DIENS, Ecole normale supérieure, Paris, France

3 : Institut Universitaire de France, Paris, France

- 1 Exploring temporal graphs
- 2 Restlessness and edge-colored graphs
- 3 Our results

Our model

Temporal graph

A *temporal graph* is defined by

- a set of vertices V
- a sequence of set of edges E_1, E_2, \dots that may or may not be finite

The graph $G_t = (V, E_t)$ is called the *snapshot* at time t .

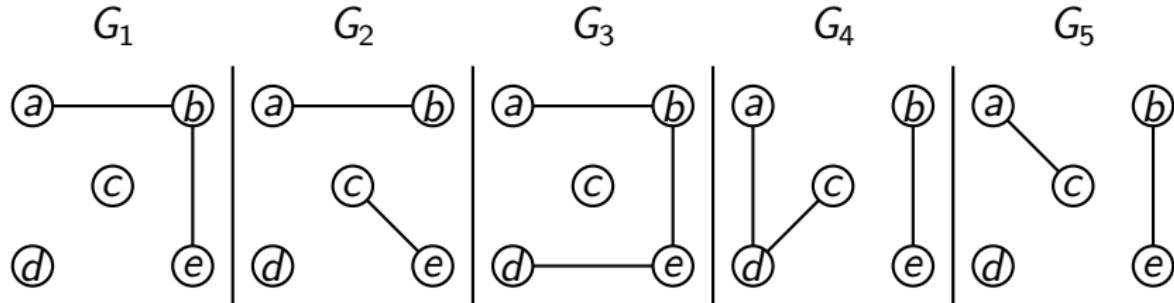
Our model

Temporal graph

A *temporal graph* is defined by

- a set of vertices V
- a sequence of set of edges E_1, E_2, \dots that may or may not be finite

The graph $G_t = (V, E_t)$ is called the *snapshot* at time t .



Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

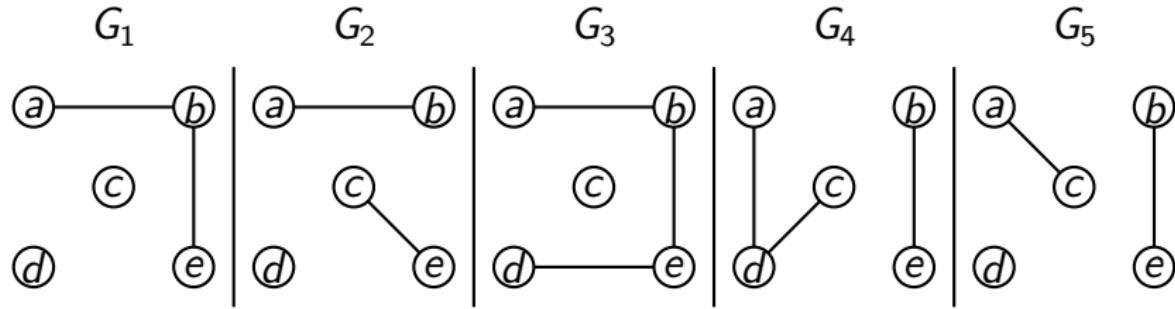
Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

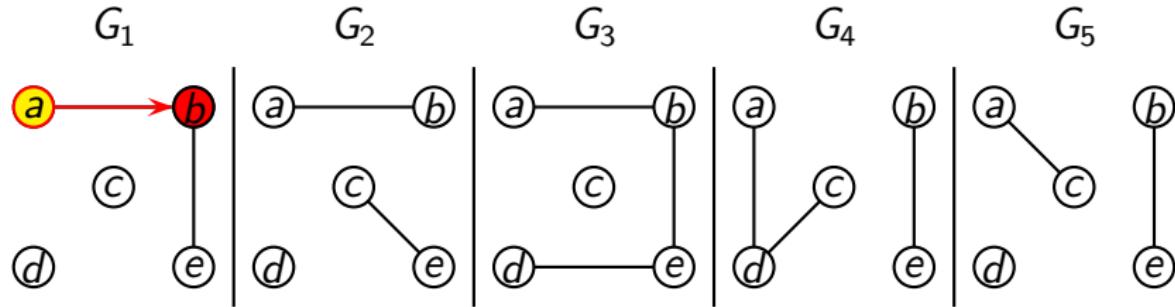


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

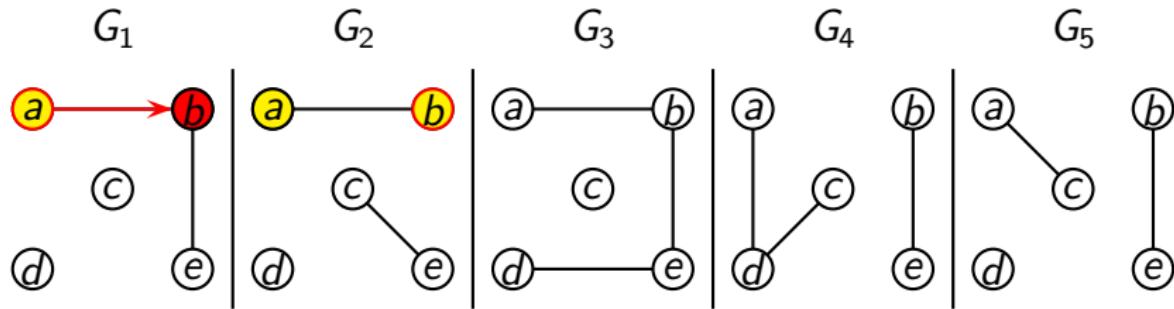


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

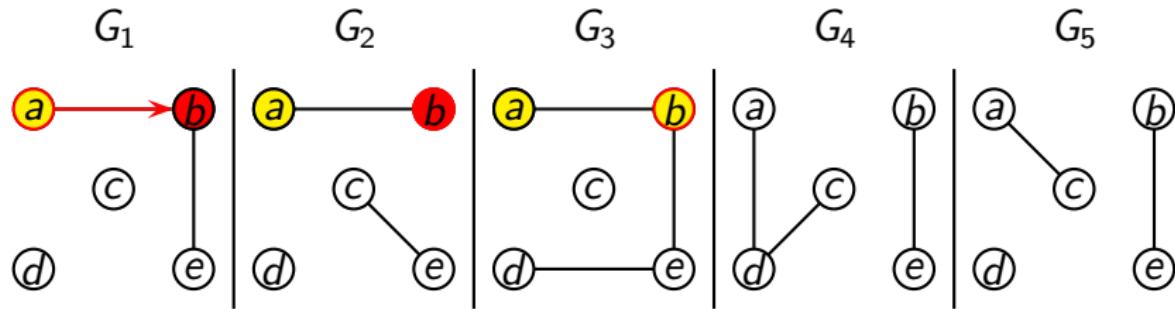


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

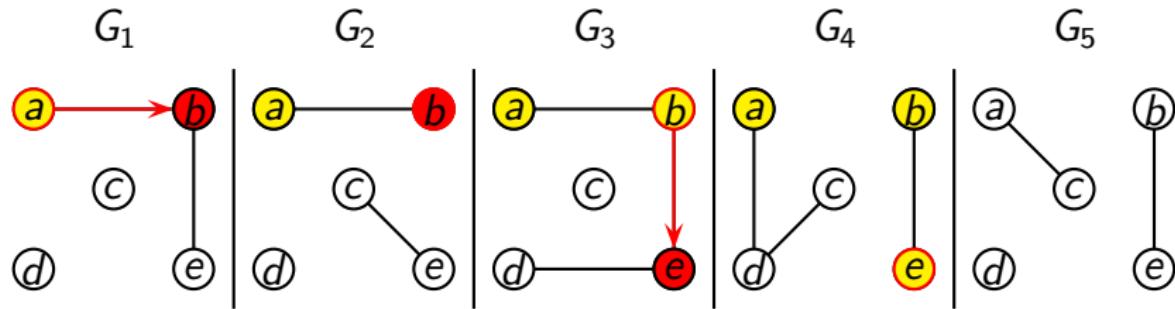


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

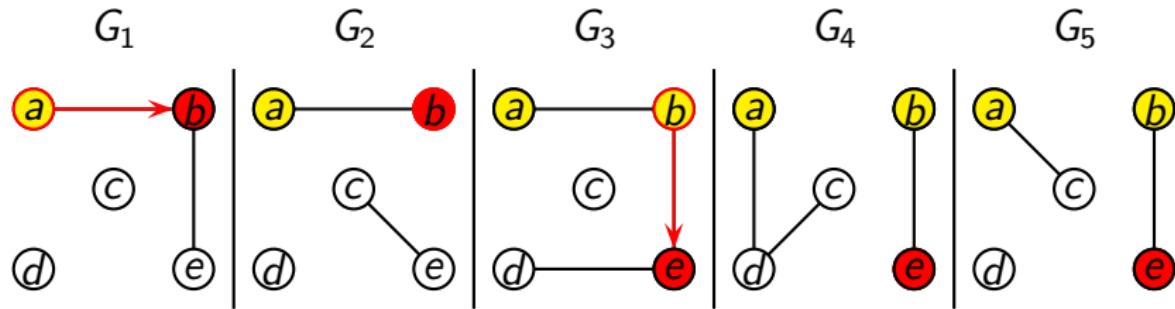


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

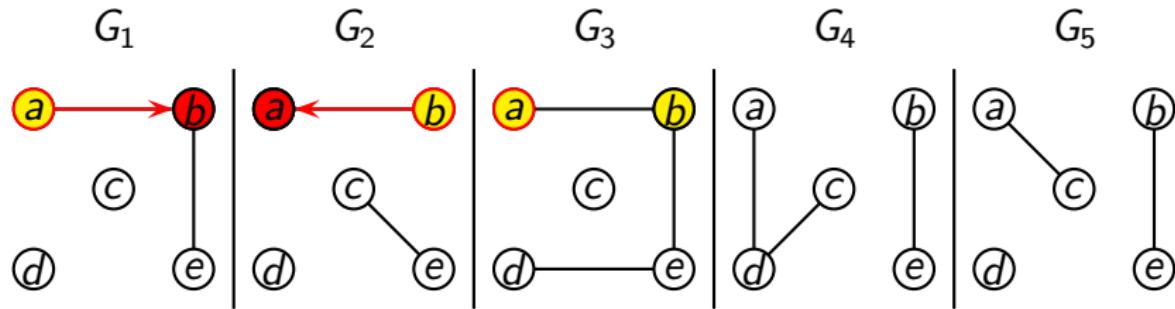


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices



Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

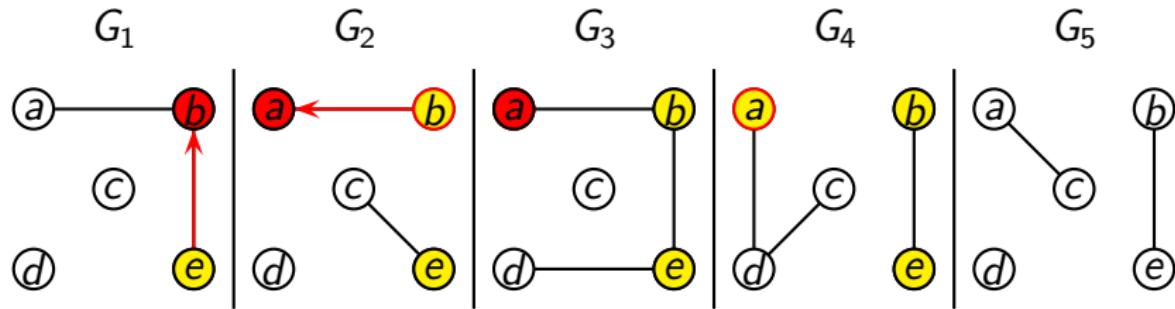


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

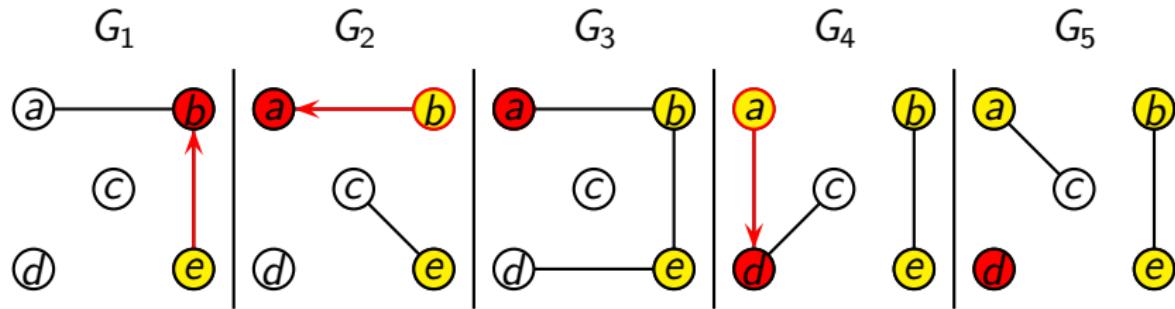


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

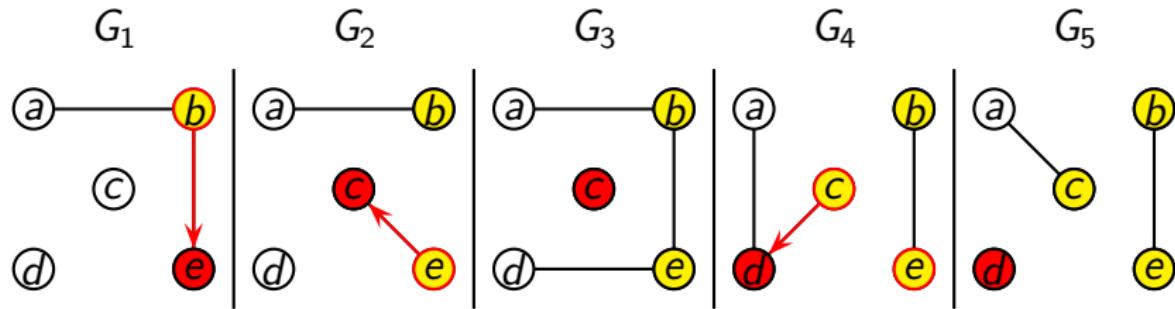


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

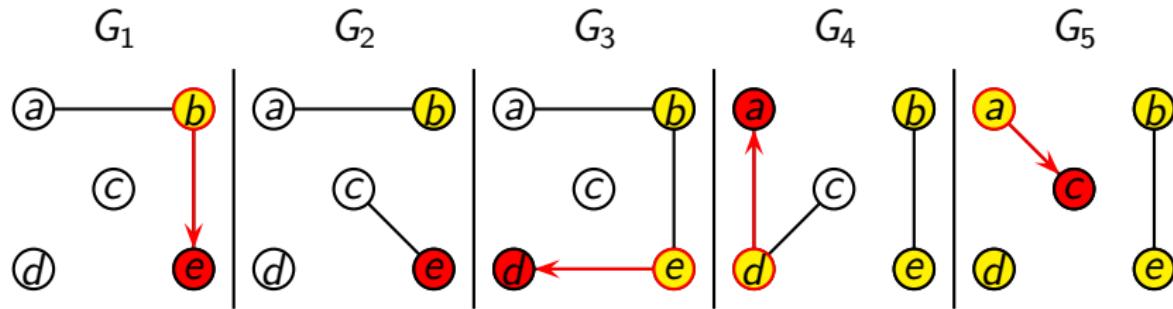


Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices



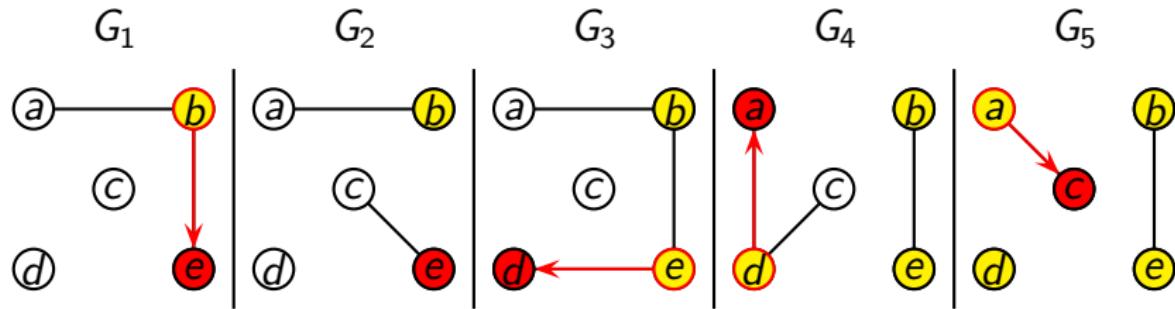
NP-complete in the lifespan of the graph !

Journey and exploration

Definition

A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \dots such that for all i , $v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$.

Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices



Time bounds

How much time can it take to explore a graph ?

- If every G_i is connected

Time bounds

How much time can it take to explore a graph ?

- If every G_i is connected

Let $u \in V$. Let U_t be the set of vertices reachable from u in $\leq t$ steps.

If $U_i \neq V$, there has to be an edge in E_i between a vertex of U_i and $v \in V \setminus U_i \rightarrow v \in U_{i+1}$.

Time bounds

How much time can it take to explore a graph ?

- If every G_i is connected

Let $u \in V$. Let U_t be the set of vertices reachable from u in $\leq t$ steps.

If $U_t \neq V$, there has to be an edge in E_t between a vertex of U_t and $v \in V \setminus U_t \rightarrow v \in U_{t+1}$.
→ we can go from any u to any v in $\leq n$ steps.

Time bounds

How much time can it take to explore a graph ?

- If every G_i is connected $O(n^2)$.

Let $u \in V$. Let U_t be the set of vertices reachable from u in $\leq t$ steps.

If $U_i \neq V$, there has to be an edge in E_i between a vertex of U_i and $v \in V \setminus U_i \rightarrow v \in U_{i+1}$.
→ we can go from any u to any v in $\leq n$ steps.

Time bounds

How much time can it take to explore a graph ?

- If every G_i is connected $O(n^2)$.
- In the general case, it might never be possible.

Let $u \in V$. Let U_t be the set of vertices reachable from u in $\leq t$ steps.

If $U_i \neq V$, there has to be an edge in E_i between a vertex of U_i and $v \in V \setminus U_i \rightarrow v \in U_{i+1}$.

\rightarrow we can go from any u to any v in $\leq n$ steps.

Time bounds

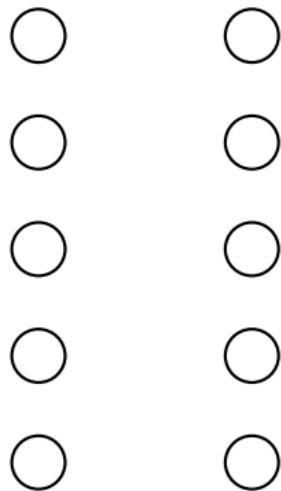
How much time can it take to explore a graph ?

- If every G_i is connected $O(n^2)$.
- In the general case, it might never be possible.
- If the graph is periodic, possible iff the union of the snapshots is connected.

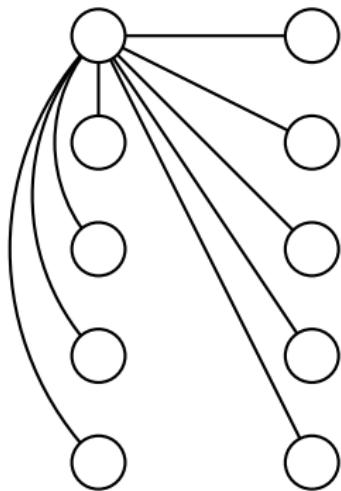
Let $u \in V$. Let U_t be the set of vertices reachable from u in $\leq t$ steps.

If $U_i \neq V$, there has to be an edge in E_i between a vertex of U_i and $v \in V \setminus U_i \rightarrow v \in U_{i+1}$.
 \rightarrow we can go from any u to any v in $\leq n$ steps.

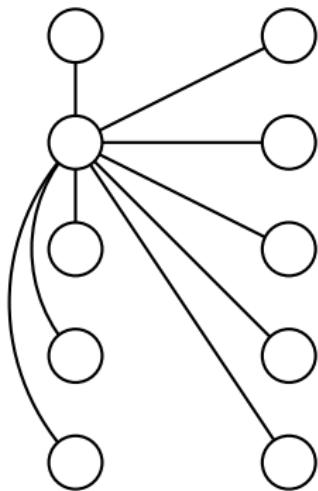
Erlebach, Hoffmann and Kammer's construction



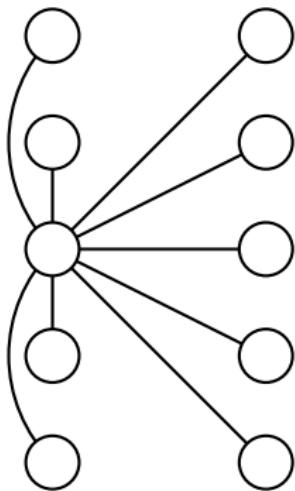
Erlebach, Hoffmann and Kammer's construction



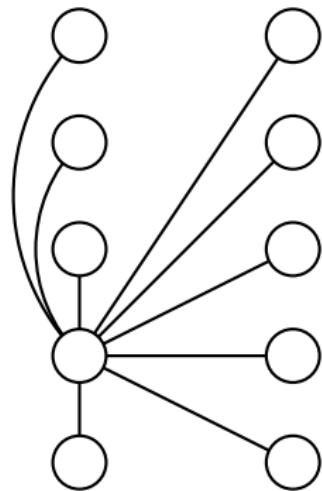
Erlebach, Hoffmann and Kammer's construction



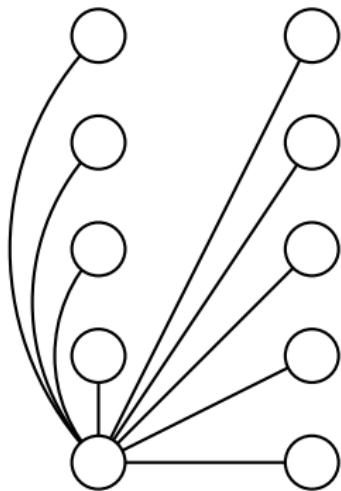
Erlebach, Hoffmann and Kammer's construction



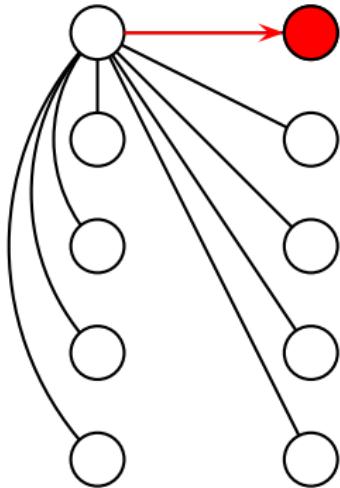
Erlebach, Hoffmann and Kammer's construction



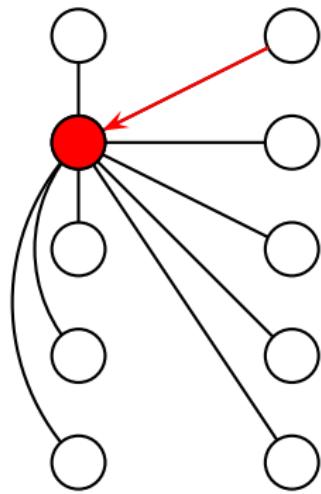
Erlebach, Hoffmann and Kammer's construction



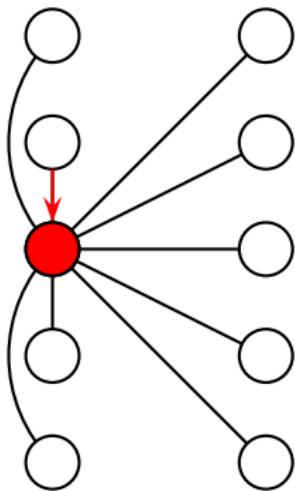
Erlebach, Hoffmann and Kammer's construction



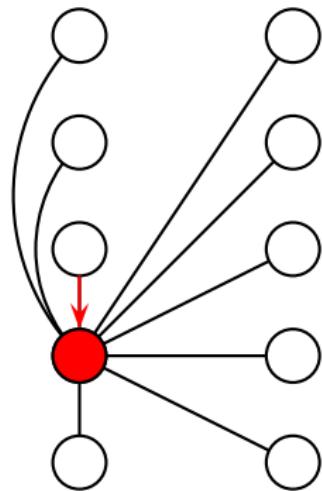
Erlebach, Hoffmann and Kammer's construction



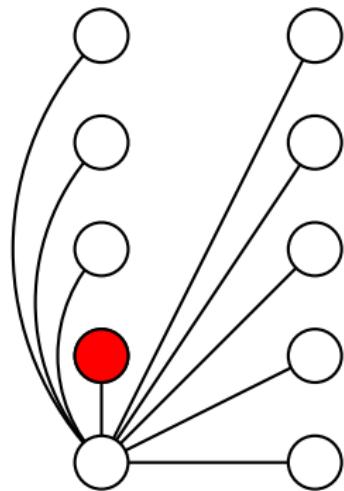
Erlebach, Hoffmann and Kammer's construction



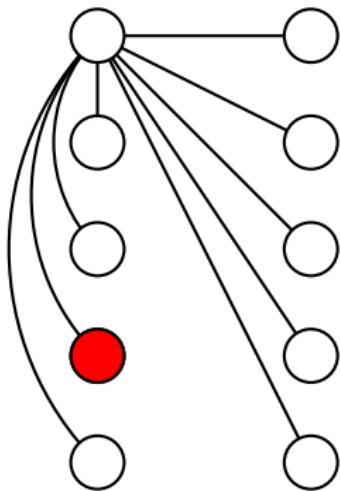
Erlebach, Hoffmann and Kammer's construction



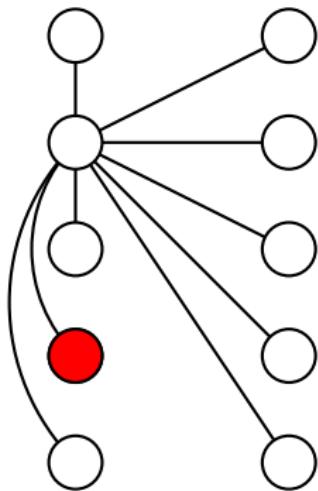
Erlebach, Hoffmann and Kammer's construction



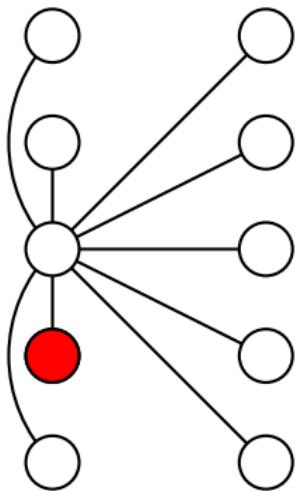
Erlebach, Hoffmann and Kammer's construction



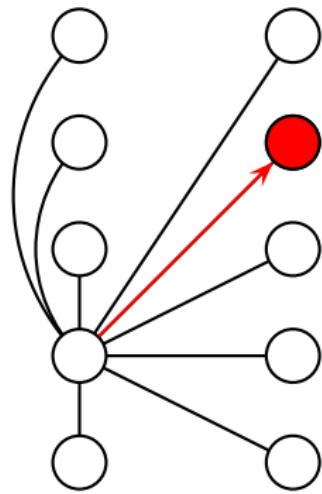
Erlebach, Hoffmann and Kammer's construction



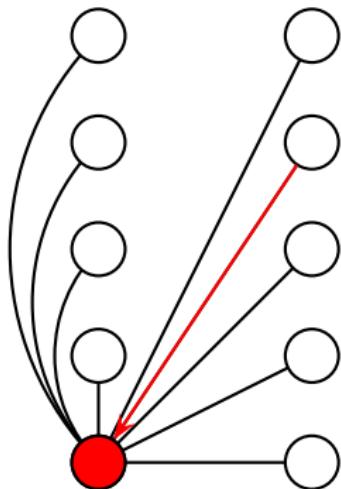
Erlebach, Hoffmann and Kammer's construction



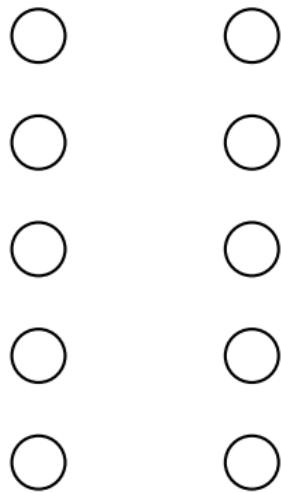
Erlebach, Hoffmann and Kammer's construction



Erlebach, Hoffmann and Kammer's construction



Erlebach, Hoffmann and Kammer's construction



The $O(n^2)$ -bound is tight

Restlessness

Definition

A journey is Δ -restless if not allowed to wait Δ steps in a row.

For example :

- routing in non delay tolerant network, with memory limitation on the nodes ;
- the spread of the virus if patients recover in Δ steps.

Restlessness

Definition

A journey is Δ -restless if not allowed to wait Δ steps in a row.

For example :

- routing in non delay tolerant network, with memory limitation on the nodes ;
- the spread of the virus if patients recover in Δ steps.

Restless exploration is not always possible even if every snapshot is connected (cf previous construction).

Restlessness

Definition

A journey is Δ -restless if not allowed to wait Δ steps in a row.

For example :

- routing in non delay tolerant network, with memory limitation on the nodes ;
- the spread of the virus if patients recover in Δ steps.

Restless exploration is not always possible even if every snapshot is connected (cf previous construction).

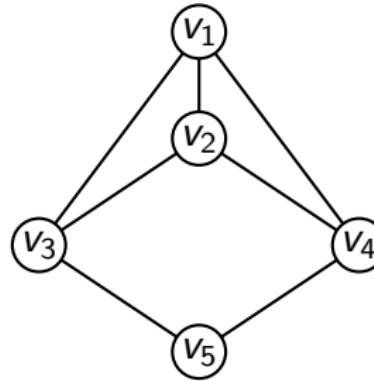
Our problem

Given a periodic temporal graph, can we explore it restlessly ?

Edge-colouring

Let $G = (V, E)$ be an undirected graph.

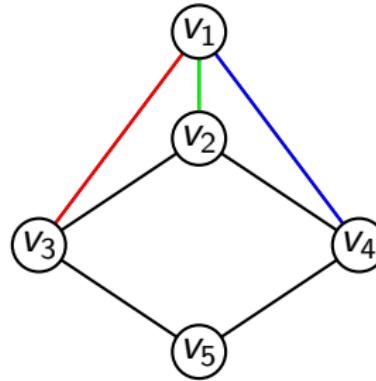
- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

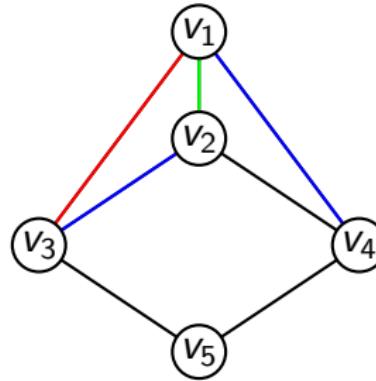
- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

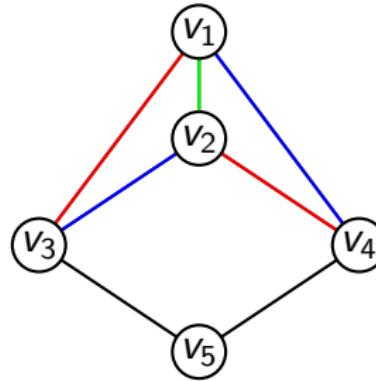
- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

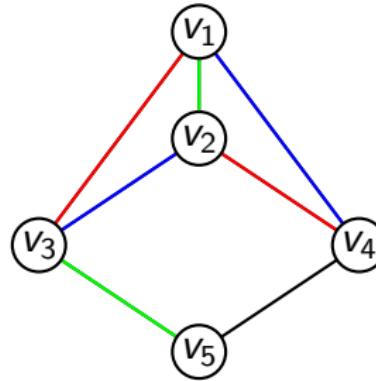
- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

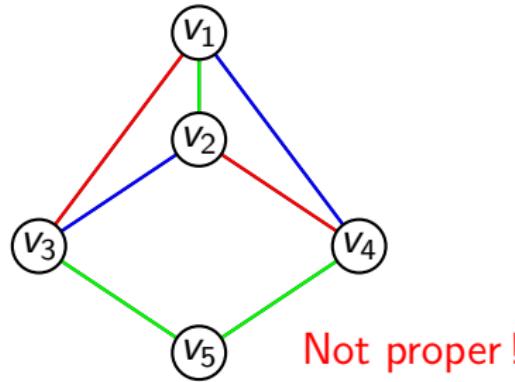
- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

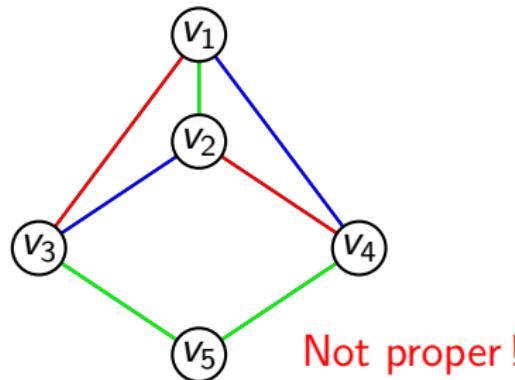
- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Edge-colouring

Let $G = (V, E)$ be an undirected graph.

- k -edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



- Properly-coloured walk : does not use consecutively two edges of the same colour.

Context

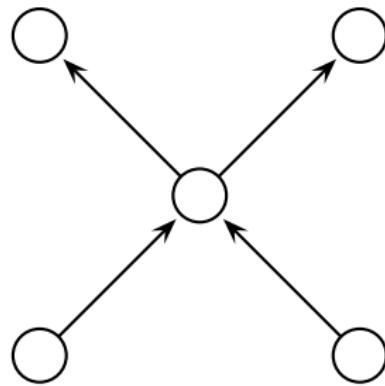
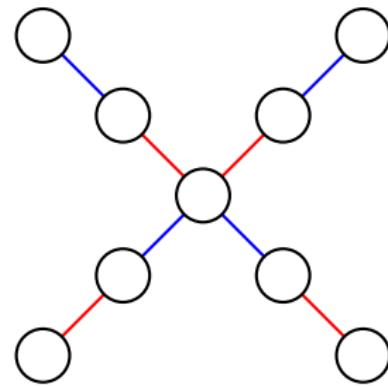
- Introduced by Chen and Daykin in 1976.

Context

- Introduced by Chen and Daykin in 1976.
- Applications in bioinformatics and chemistry.

Context

- Introduced by Chen and Daykin in 1976.
- Applications in bioinformatics and chemistry.
- Powerful model.



Strict alternance

Definition

In a k -edge-colored graph, a walk is *strictly alternating* if the edge between the vertices i and $i + 1$ is colored $i \pmod k$.

Strict alternance

Definition

In a k -edge-colored graph, a walk is *strictly alternating* if the edge between the vertices i and $i + 1$ is colored $i \bmod k$.

An open problem

If G is a complete k -edge colored multigraph :

- if $k = 2$, we can say in polynomial time if G admits a properly-colored hamiltonian cycle
- if $k \geq 3$, the complexity is open
- if the cycle has to be strictly alternating, polynomial for every k

Edge-coloring and temporality

Let $G_t = (V, (E_1, E_2, \dots, E_k))$ be a k -periodic temporal graph.

Let G_c be a k -edge-colored multigraph with :

- same vertex set as G_t
- an edge uv colored i for every $uv \in E_i$

Edge-coloring and temporality

Let $G_t = (V, (E_1, E_2, \dots, E_k))$ be a k -periodic temporal graph.

Let G_c be a k -edge-colored multigraph with :

- same vertex set as G_t
- an edge uv colored i for every $uv \in E_i$

- k -restless journey in G_t = properly-colored path in G_c .
- 1-restless journey in G_t = strictly alternating path in G_c .

Our results

Theorem

One can decide in polynomial time whether a 2-periodic temporal graph can be 1-restlessly explored.

Our results

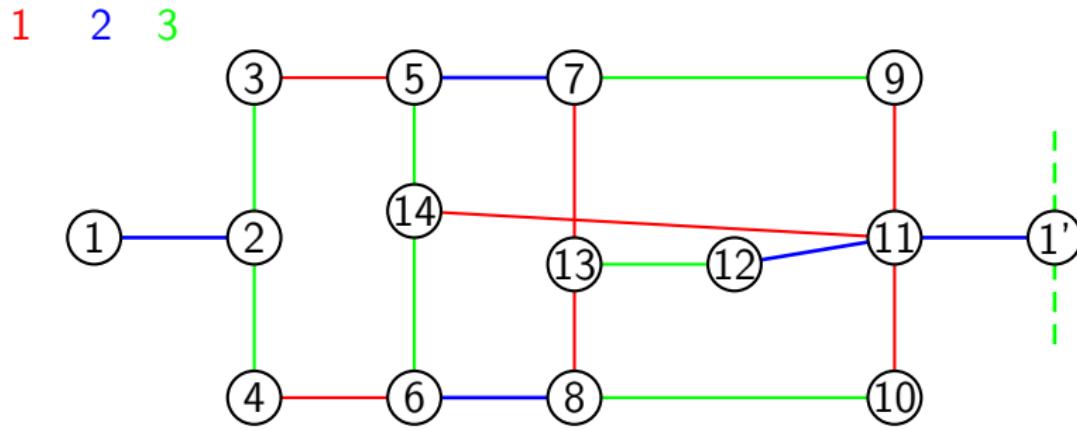
Theorem

One can decide in polynomial time whether a 2-periodic temporal graph can be 1-restlessly explored.

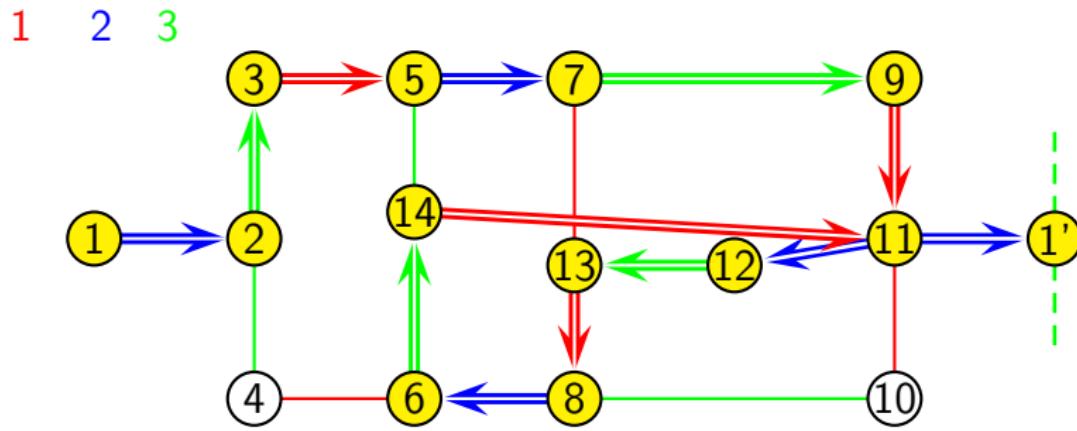
Theorem

For every $p \geq 3$, it is NP-complete to decide whether a p -periodic temporal graph can be 1-restlessly explored.

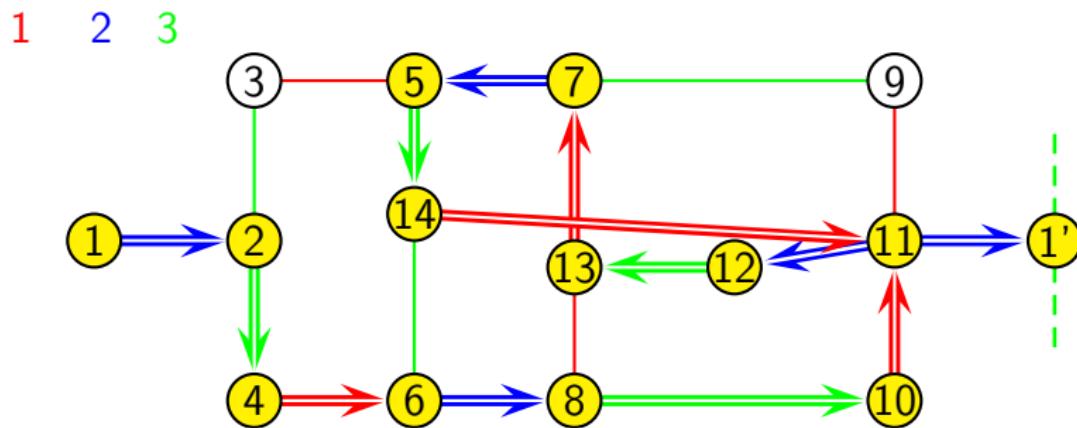
Idea of the proof



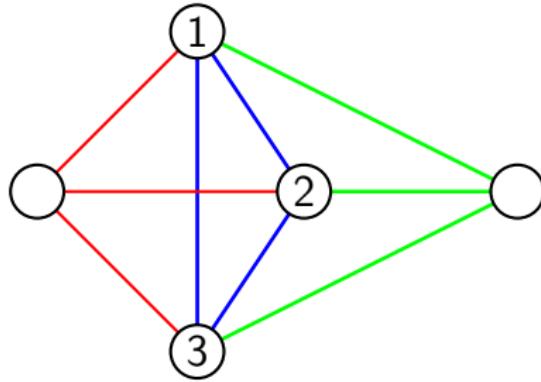
Idea of the proof



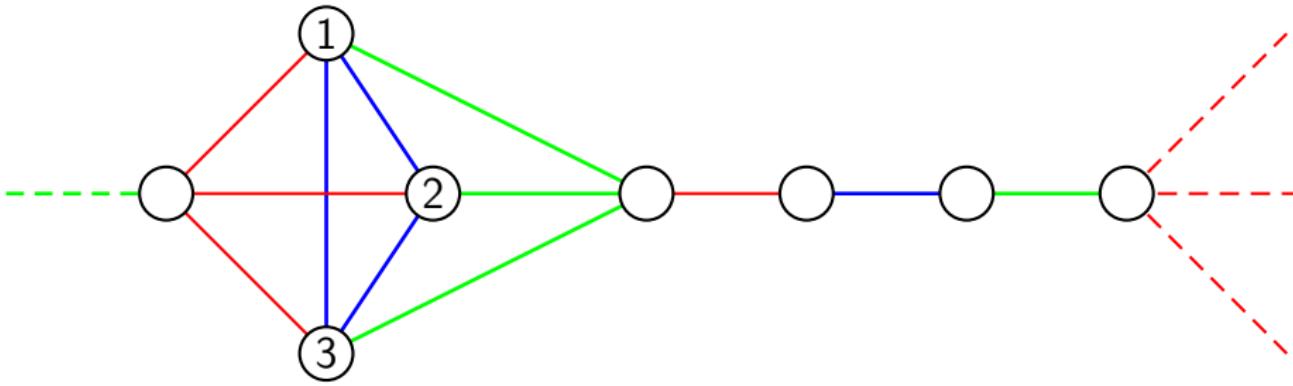
Idea of the proof



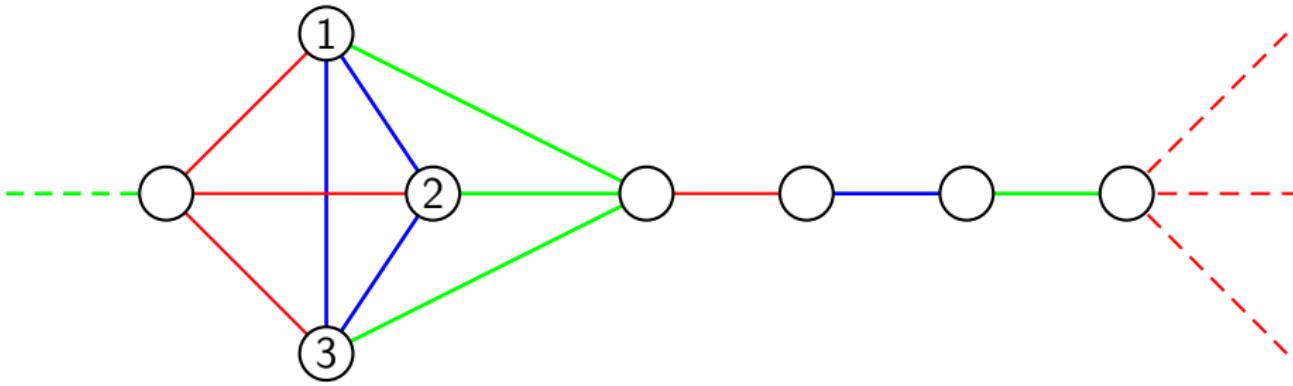
Idea of the proof



Idea of the proof

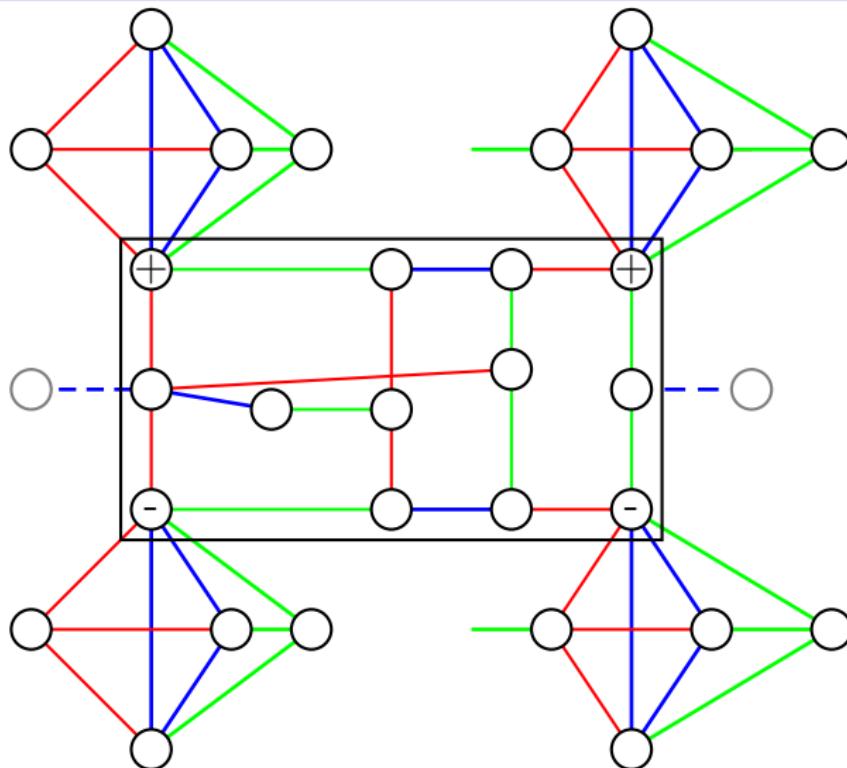


Idea of the proof



3-SAT-(2,2) : 3-sat where every variable has exactly 2 positive and 2 negative occurrences. NP-complete (Berman, Karpinski, Scott)

Idea of the proof

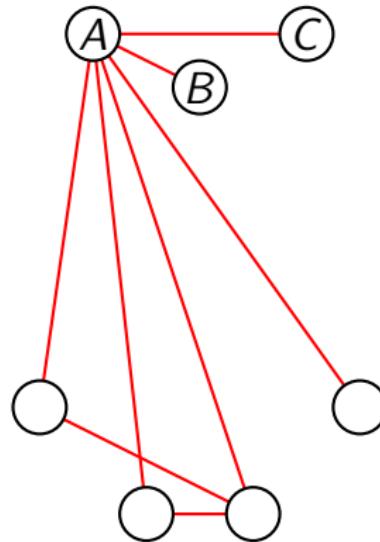


The trap

Our results still hold if the graph has to be connected all the time.

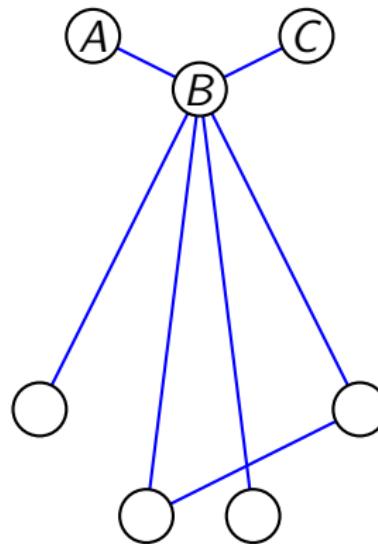
The trap

Our results still hold if the graph has to be connected all the time.



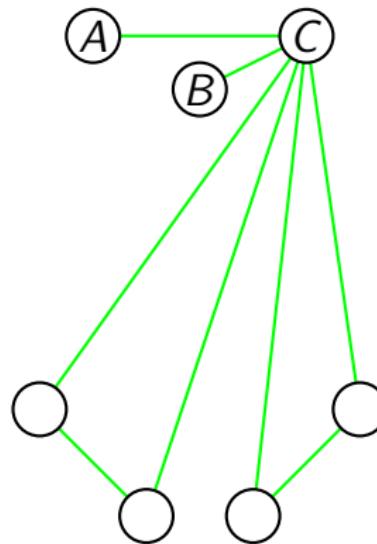
The trap

Our results still hold if the graph has to be connected all the time.



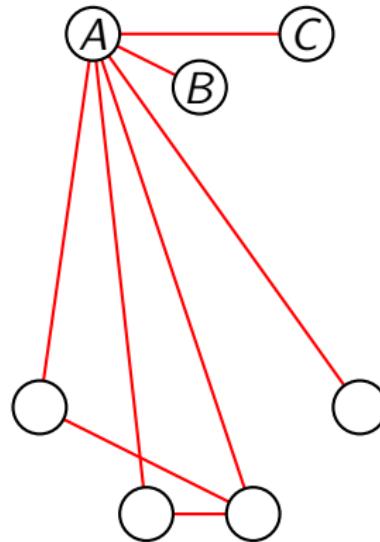
The trap

Our results still hold if the graph has to be connected all the time.



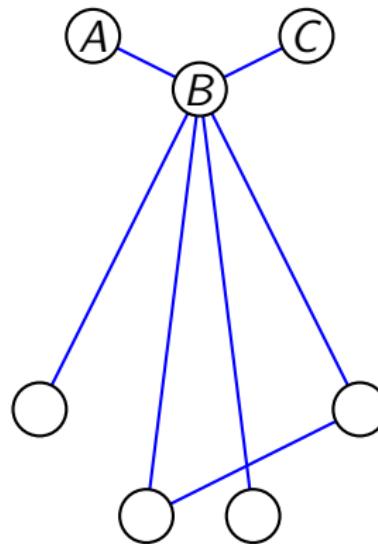
The trap

Our results still hold if the graph has to be connected all the time.



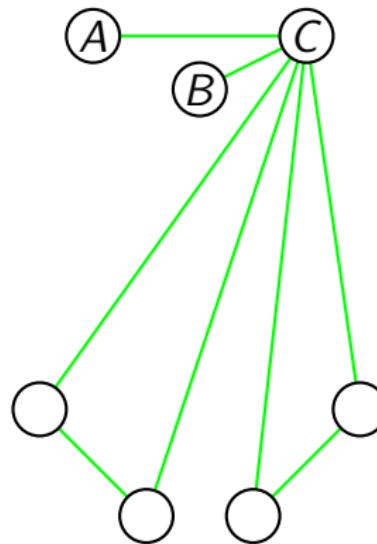
The trap

Our results still hold if the graph has to be connected all the time.



The trap

Our results still hold if the graph has to be connected all the time.



Time bounds

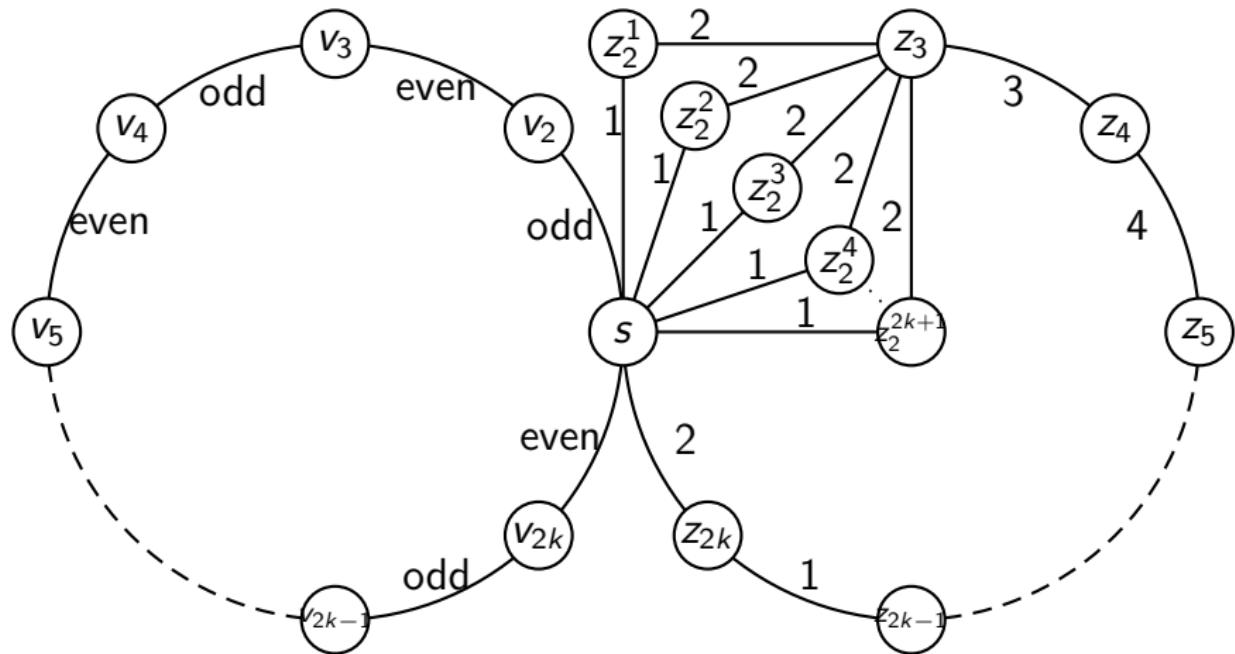
Upper bound

Any explorable p -periodic temporal graph can be explored restlessly in at most pn^2 steps.

Lower bound

For every $p \geq 2$ there are families of explorable p -periodic temporal graphs that require $\Omega(pn^2)$ steps to be explored.

Our construction



Open questions

- Every explorable p -periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap ?

Open questions

- Every explorable p -periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap ?
- What about k -restlessness with $k > 1$?

Open questions

- Every explorable p -periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap ?
- What about k -restlessness with $k > 1$?
- FPT algorithm for the NP-complete case ?

Open questions

- Every explorable p -periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap ?
- What about k -restlessness with $k > 1$?
- FPT algorithm for the NP-complete case ?
- What if the graph cannot change too much between two consecutive frames ?

Thank you !