
THÈSE

présentée à

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

par Thomas Bellitto

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Walks, Transitions and Geometric Distances in Graphs.

Soutenue publiquement le 27 août 2018

après avis des rapporteurs :
Jørgen Bang-Jensen, Professeur, University of Southern Denmark
Sylvain Gravier, Directeur de recherche, Université Joseph Fourier

devant la commission d’examen composée de :
Christine Bachoc, professeure, Université de Bordeaux, directrice de thèse
Jørgen Bang-Jensen, professeur, University of Southern Denmark, rapporteur
Sylvain Gravier, directeur de recherche, Université Joseph Fourier, rapporteur
Mickael Montassier, professeur, Université de Montpellier, examinateur
Arnaud Pêcher, professeur, Université de Bordeaux, directeur de thèse

Éric Sopena, professeur, Université de Bordeaux, président du jury

2018

Walks, Transitions and Geometric Distances in Graphs.

Abstract This thesis studies combinatorial, algorithmic and complexity aspects
of graph theory problems, and especially of problems related to the notions of walks,
transitions and distances in graphs.

We first study the problem of traffic monitoring, in which we have to place
as few censors as possible on the arcs of a graph to be able to retrace walks of
objects. The characterization of instances of practical interests brings us to the
notion of forbidden transitions, which strengthens the model of graphs. Our work
on forbidden-transition graphs also includes the study of connecting transition sets,
which can be seen as a translation to forbidden-transition graphs of the notion of
spanning trees.

A large part of this thesis focuses on geometric graphs, which are graphs whose
vertices are points of the real space and whose edges are determined by geometric
distance between the vertices. This graphs are at the core of the famous Hadwiger-
Nelson problem and are of great help in our study of the density of sets avoiding
distance 1 in various normed spaces. We develop new tools to study these problems
and use them to prove the Bachoc-Robins conjecture on several parallelohedra. We
also investigate the case of the Euclidean plane and improve the bounds on the
density of sets avoiding distance 1 and on its fractional chromatic number.

Finally, we study the complexity of graph homomorphism problems and estab-
lish dichotomy theorems for the complexity of locally-injective homomorphisms to
reflexive tournaments.

Keywords Graphs, walks, forbidden transitions, graph homomorphisms, indepen-
dence number, geometric distances, sets avoiding distance 1, NP-completeness

Affiliation University of Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence,
France

Walks, Transitions and Geometric Distances in Graphs. iii

iv Thomas Bellitto

Marches, Transitions et Distances Géométriques dans les Graphes.

Résumé Cette thèse étudie les aspects combinatoires, algorithmiques et la
complexité de problèmes de théorie des graphes, et tout spécialement de problèmes
liés aux notions de marches, de transitions et de distance dans les graphes.

Nous nous intéressons d’abord au problème de traffic monitoring, qui consiste à
placer aussi peu de capteurs que possible sur les arcs d’un graphe de façon à pouvoir
reconstituer des marches d’objets. La caractérisation d’instances intéressantes dans
la pratique nous amène à la notion de transitions interdites, qui renforce le modèle
de graphe. Notre travail sur les graphes à transitions interdites comprend aussi
l’étude de la notion d’ensemble de transitions connectant, que l’on peut voir comme
l’analogue en terme de transitions de la notion d’arbre couvrant.

Une partie importante de cette thèse porte sur les graphes géométriques, qui
sont des graphes dont les sommets sont des points de l’espace réel et dont les arêtes
sont déterminées par les distances géométriques entre les sommets. Ces graphes
sont au cœur du célèbre problème de Hadwiger-Nelson et nous sont d’une grande
aide dans notre étude de la densité des ensembles qui évitent la distance 1 dans
plusieurs types d’espaces normés. Nous développons des outils pour étudier ces
problèmes et les utilisons pour prouver la conjecture de Bachoc-Robins sur plusieurs
paralléloèdres. Nous nous penchons aussi sur le cas du plan euclidien et améliorons
les bornes sur la densité des ensembles évitant la distance 1 et sur son nombre
chromatique fractionnaire.

Enfin, nous étudions la complexité de problèmes d’homomorphismes de graphes
et établissons des théorèmes de dichotomie sur la complexité des homomorphismes
localement injectifs vers les tournois réflexifs.

Mots-clés Graphes, marches, transitions interdites, homomorphismes de graphes,
nombre de stabilité, distances géometriques, ensemble évitant la distance 1, NP-
complétude

Affiliation Université de Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence,
France

Walks, Transitions and Geometric Distances in Graphs. v

vi Thomas Bellitto

Acknowledgements

Je commence bien sûr cette section par un très grand merci à Arnaud, qui
m’encadre depuis mon stage de master et qui m’a énormément aidé à trouver ce
que je voulais faire et à arriver là où j’en suis. Merci pour ton soutien, ton aide et
tes conseils dans tellement de domaines : la recherche, l’enseignement, la rédaction,
la recherche de stages puis de postdocs, les candidatures... Merci aussi pour ta confi-
ance et la liberté que tu m’as laissée pendant ma thèse pour trouver les problèmes sur
lesquels je voulais travailler et les directions que je voulais explorer. Merci surtout
pour tout le temps que tu as toujours réussi à trouver dans ton emploi du temps
chargé pour écouter, relire et essayer de comprendre mes idées tordues. Un grand
merci aussi à Christine, qui m’a beaucoup aidé à enrichir mon domaine de recherche,
qui m’a fait découvrir des problèmes passionnants et qui m’a énormément aidé à les
relier à ce que je savais faire et à partir dans la bonne direction.

I also thank Sylvain Gravier and Jørgen Bang-Jensen for accepting to read the
manuscript and Éric Sopena and Mickael Montassier for being part of the jury.

I would also like to thank Jørgen Bang-Jensen again and Anders Yeo for choosing
me for an open postdoc position in their team. I am really excited for this next
important step of my journey.

Of course, I would like to thank my co-authors and all the people I have worked
with and without whose ideas this thesis would probably never have existed. Arnaud
et Christine, une fois encore. Philippe, mon frère de thèse, avec qui ça a toujours
été un grand plaisir de travailler ou de discuter. Gary, of course; I had an amazing
time in Victoria thanks to you and you have done a lot to help me since. Thank
you to my other co-authors from Victoria too: Chris, Stefan and Feiran. Merci à
Benjamin avec qui j’ai beaucoup aimé travailler et échanger. Merci aussi à Antoine
avec qui ça a été un plaisir de travailler ces derniers mois.

Thank you to my previous advisors: Gunnar Klau, Tobias Marschall, Alexander
Schönhuth, David Coudert, Nicolas Nisse and Endre Boros.

Merci évidemment à toute l’équipe de théorie des graphes du LaBRI pour de
nombreux échanges passionnants et pour un cadre de travail et une ambiance très
agréables. Merci aussi à mon équipe INRIA, Réalopt, et à mes co-bureaux, Henri et
Théo.

Merci à Hervé et à toute l’équipe de Maths à Modeler pour cette expérience très
enrichissante.

Un grand merci aussi à tous mes collègues d’équipes pédagogiques. Je pense

vii

notamment à Carole, Olivier, Feri et Cyril avec qui ça a été un grand plaisir de
travailler.

Merci aussi à tous ceux que j’ai oubliés et qui m’ont aidé à arriver là où je suis
aujourd’hui.

Merci à tous mes amis, du labo et d’ailleurs. Un énorme merci tout partic-
ulièrement à Théo et Antonin pour leur soutien et pour tous les bons moments
passés ensemble ces dernières années.

Merci enfin à ma famille et surtout à ma mère et mon frère pour leur soutien
inconditionnel depuis toutes ces années.

viii Thomas Bellitto

Contents

Introduction 9

1 Preliminaries 17

1.1 Fundamentals of graph theory . 18

1.1.1 Core definitions . 18

1.1.2 Homomorphisms and colouring 23

1.1.3 Special vertex sets . 26

1.1.4 Hypergraphs . 28

1.2 Elements of complexity . 30

1.2.1 P, NP and polynomial reductions 30

1.2.2 3-SAT and NP-completeness 31

1.2.3 Approximations . 33

1.3 Walks, connectivity and transitions 33

1.3.1 Walks and connectivity in usual graphs 33

1.3.2 Forbidden-transition graphs 36

1.4 Polytopes and lattices . 38

1.4.1 Norms and distances . 38

1.4.2 Lattices . 40

1.4.3 Polytopes . 41

1.4.4 Classification of the parallelohedra in dimension 2 and 3 . . . 43

1.5 Rational languages and automata . 45

1.5.1 Rational languages . 46

1.5.2 Automata and recognition . 47

1.6 Linear programming . 50

1.6.1 Definitions . 50

1.6.2 Integer linear programming 52

2 Separating codes and traffic monitoring 55

2.1 Introduction . 55

2.2 The traffic monitoring problem . 56

2.2.1 Definition . 56

2.2.2 Limitations of the existing separation models 57

2.3 A new model of separation: separation on a language 59

2.3.1 Presentation of the problem 59

2.3.2 Expressiveness of the model 59

ix

CONTENTS

2.4 Separation of a finite set of walks . 60

2.5 Separation of walks with given endpoints 63

2.5.1 Study of the reachable languages 64

2.5.2 Reduction theorem and resolution 65

2.6 Separation of walks with forbidden transitions 69

2.6.1 Motivation of the problem . 69

2.6.2 Study of the FTG-reachable languages 70

2.6.3 Reduction theorem and resolution 72

2.7 Conclusion . 75

3 Minimum connecting transition sets in graphs 77

3.1 Introduction . 77

3.2 Polynomial algorithms and structural results 79

3.2.1 General bounds . 79

3.2.2 Connecting hypergraphs . 81

3.2.3 Polynomial approximation . 87

3.3 NP-completeness . 89

3.3.1 MCTS in FTGs . 89

3.3.2 MCTS in usual graphs . 91

3.3.3 Intuition of the proof . 97

3.4 Conclusion . 102

4 Density of sets avoiding parallelohedron distance 1 103

4.1 Introduction . 103

4.1.1 Unit-distance graphs and the Hadwiger-Nelson problem . . . 103

4.1.2 Density of sets avoiding distance 1 105

4.2 Preliminary results and method . 108

4.2.1 Independence ratio of a discrete graph 108

4.2.2 Discretization of the problem 112

4.3 Parallelohedron norms in the plane 113

4.3.1 The regular hexagon . 113

4.3.2 General Voronöı hexagons . 116

4.4 The norms induced by the Voronöı cells of An and Dn 121

4.4.1 The lattice An . 121

4.4.2 The lattice Dn . 124

4.5 The chromatic number of G(Rn, ‖ · ‖P) 126

4.6 Conclusion . 127

5 Optimal weighted independence ratio 129

5.1 Introduction . 129

5.2 Our approach . 130

5.2.1 Optimal weighted independence ratio 130

5.2.2 Weighted discretization lemma 132

5.2.3 Fractional chromatic number 133

5.3 General norms . 136

5.3.1 Preliminary study . 136

x Thomas Bellitto

CONTENTS

5.3.2 The algorithm . 138
5.3.3 The Euclidean plane . 140

5.4 Parallelohedron norms . 143
5.4.1 Λ-classes and k-regularity . 143
5.4.2 The algorithm . 149
5.4.3 Building finite graphs . 152
5.4.4 The truncated octahedron . 154

5.5 Conclusion . 155

6 Complexity of locally-injective homomorphisms to tournaments 157
6.1 Introduction . 157

6.1.1 Our problem . 157
6.1.2 Known results . 160

6.2 Ios-injective homomorphisms . 161
6.2.1 Ios-injective T4-colouring . 161
6.2.2 Ios-injective T5-colouring . 166
6.2.3 Dichotomy theorem . 168

6.3 Iot-injective homomorphisms . 171
6.3.1 Iot-injective T4-colouring . 171
6.3.2 Iot-injective T5-colouring . 175
6.3.3 Dichotomy theorem . 178

6.4 Conclusion . 180

7 Conclusion and further work 181
7.1 Separation on languages and traffic monitoring 181

7.1.1 Reducible languages . 181
7.1.2 Planar instances . 184

7.2 Minimum connecting transition sets 184
7.2.1 Sparse graphs . 185
7.2.2 Stretch of the solution . 185

7.3 Sets avoiding distance 1 . 185
7.3.1 The Euclidean plane and Erdős’ conjecture 186
7.3.2 Parallelohedra and Bachoc-Robins’ conjecture 186
7.3.3 Power and limitation of weighted subgraphs 187

7.4 Locally-injective directed homomorphisms 188

A Computational bound in the Euclidean plane 191

Index 193

Bibliography 197

Walks, Transitions and Geometric Distances in Graphs. xi

CONTENTS

xii Thomas Bellitto

Introduction (en français)

Cette thèse étudie des problème et des notions liées à la structure mathématique
de graphe. Les graphes et graphes orientés sont un modèle puissant qui permet
de décrire n’importe quelle relation binaire sur un ensemble. Les éléments de cet
ensemble sont appelés des sommets et les paires d’éléments liés (ou adjacent) sont
appelées arêtes. Grâce à leur expressivité, les graphes trouvent des applications
dans d’innombrables domaines: systèmes d’information, télécommunications, bio-
informatique, traitement d’images, réseaux de transports, réseaux sociaux, planifi-
cation... et bien d’autres. Les graphes ont été introduits il y a presque trois siècles
et l’intérêt qui leur est porté n’a cessé de grandir depuis, surtout avec l’émergence
de l’informatique.

Plus précisément, cette thèse s’intéresse à la notion de marche et de distance
dans les graphes, ainsi qu’aux aspects combinatoires, algorithmiques et à la com-
plexité de problèmes liés. Une marche dans un graphe est une suite de sommets
adjacents qui permet de relier deux sommets. Le nombre d’éléments dans la marche
permet de définir sa longueur et la longueur des marches entre deux sommets définit
leur distance. Nous étudions également de près les graphes géométriques, qui sont
des graphes dont les sommets sont des points de l’espace réel. La relation en-
tre la distance définie par l’adjacence dans le graphe et la distance géométrique
nous intéressera tout particulièrement. Nos travaux font aussi beaucoup intervenir
d’autres notions connues de théorie des graphes, dont celles d’ensemble stable, de
coloration et d’homomorphisme.

Les problèmes et résultats présentés dans cette thèse peuvent se diviser en trois
parties.

Transitions dans les graphes

La première partie se penche sur le modèle de graphes à transitions interdites. La
puissance des modèles de graphe et de marche en fait les modèles de choix pour
étudier des problèmes de routage dans de nombreux contextes. Par exemple, le
réseau routier d’une ville peut être modélisé par un graphe dans lequel chaque endroit
d’intérêt et chaque croisement sont représentés par des sommets et où l’existence
d’une route directe entre deux sommets est traduite par une arête (ou un arc dans le
cas d’une route à sens unique). Ce faisant, nous définissons implicitement un ensem-
ble des marches entre chaque paire de sommets qui peut-être utilisé pour résoudre de
nombreux problèmes. On peut par exemple résoudre des problèmes d’optimisation
pour trouver le plus court chemin entre deux points, éviter des embouteillages, ou

1

CONTENTS

chercher des attributs qui distinguent un ensemble de marches. Cependant, dans la
pratique, beaucoup des marches définies par le graphe représentent des itinéraires
qu’un conducteur n’a pas le droit de prendre. Pour modéliser une situation où un
conducteur n’est pas autorisé à tourner à gauche ou à droite à une intersection, nous
définissons les transitions dans le graphe comme des paires d’arêtes consécutives.
L’étude des graphes à transitions interdites, où la définition du graphe inclut un
ensemble de transitions autorisées ou interdites, est un domaine de la théorie des
graphes qui émerge rapidement. Il existe aussi plusieurs autres modèles proches,
parmi lesquels les marches proprement colorées sur des graphes arêtes-colorés ou les
graphes à sous-chemins interdits.

Le premier des deux principaux problèmes liés à la notion de transitions interdites
que nous étudions dans cette thèse est le problème de traffic monitoring. Dans le
cadre de ce problème, on nous donne un graphe dans lequel des objets se déplacent et
nous connaissons à l’avance un ensemble de marches possibles que ces objets peuvent
prendre. Nous avons la possibilité de placer des capteurs sur les arcs du graphe qui
nous indiquent quand un objet passe par un arc équipé. Ainsi, pour chaque objet,
nous connaissons la suite ordonnée des arcs équipés qu’il a utilisé. Notre objectif
est de trouver comment placer aussi peu de capteurs que possible sur le graphe de
façon à ce que les informations qu’ils renvoient suffisent quand même à reconstituer
exactement l’itinéraire des marcheurs. Prenons par exemple le graphe représenté en
figure 1, où les arcs tu, vw et wx sont équipés de capteurs que nous appelons a, b et c
respectivement. Un objet qui suit la marche (t, u, v, w, x, z) activera successivement
les capteurs a, b et c. Un objet qui suit la marche (t, u, w, x, y, v, w, z) activera les
même capteurs mais activera c avant b. Ainsi, l’ensemble de capteurs {a, b, c} permet
de distinguer ces deux marches.

t

z

u

w

x

v

y

a

b

c

Figure 1: Un graphe dont trois arcs (représentés en bleu) sont équipés de capteur.

La complexité de ce problème a déjà été étudié dans [85], mais avant nos travaux,
les seuls algorithmes conçus pour ce problème [88] se plaçaient dans le cas des graphes
acycliques, dans lequel les marches possibles sont très limitées et ne peuvent notam-
ment pas passer plusieurs fois par le même sommet ou le même arc.

Le problème de traffic monitoring requiert de trouver des moyens efficaces de
décrire des ensembles des marches dans un graphe, ce que nous faisons grâce a des
outils de théorie des langages. Nous faisons apparâıtre des liens entre le problème de
traffic monitoring et le problème de code séparateur grâce à un nouveau modèle de
séparation basé sur les langages, qui nous permet de prendre en compte le nom-
bre de fois et l’ordre dans lequel les capteurs sont activés. Nous essayons en-

2 Thomas Bellitto

CONTENTS

suite d’identifier les types d’instances les plus utiles en pratique et d’exploiter leur
spécificités pour développer des algorithmes aussi efficace que possible. C’est ici
que le modèle de transitions interdites prend toute son importance. Nous étudions
plusieurs types d’instances, dont certains font apparâıtre des transitions interdites,
et nous développons des algorithmes pour reformuler le problème de traffic moni-
toring sous la forme d’un programme linéaire en nombres entiers [9].

L’autre problème que nous étudions dans cette partie de la thèse est celui d’ensem-
ble de transitions connectant minimum, qui peut être vu comme l’analogue en terme
de transitions du problème d’arbre couvrant minimum. Étant donné un graphe con-
nexe, un arbre couvrant minimum est un sous-ensemble d’arêtes de taille minimum
qui assure la connectivité du graphe, i.e. tel qu’il existe une marche entre toute
paire de sommets qui n’utilise que des arêtes de l’arbre couvrant minimum. De la
même façon, un ensemble de transitions connectant minimum est un ensemble de
transitions aussi petit que possible tel qu’il existe une marche entre chaque paire
de sommets qui n’utilise que des transitions de l’ensemble connectant minimum.
D’après la définition standard d’une transition dans un graphe non orienté, utiliser
deux fois de suite la même arête n’est pas une transition et est donc toujours autorisé.
Par exemple, la figure 2 représente un graphe où les deux transitions autorisées sont
uvy et wvy. Il existe des marches autorisées entre w et n’importe quel autre som-
met du graphe: les marches (w, v) et (w, x) n’utilisent aucune transition, la marche
(w, v, y) utilise une transition autorisée et même si la marche (w, v, u) est interdite,
il est toujours possible de relier w à u par la marche (w, v, y, v, u). Néanmoins, il est
impossible d’aller de x à u ou y et l’ensemble de transitions {wvy, uvy} n’est donc
pas connectant. Il le devient si on lui ajoute par exemple la transition uvx.

u

x w

v y

Figure 2: Un graphe avec deux transitions autorisées, représentées en vert.

Dans beaucoup de champs d’application où le modèle de transitions interdites
est pertinent (c’est le cas par exemple des réseaux routiers, des réseaux de trans-
ports ou des réseaux optique de télécommunications), il peut arriver qu’à cause de
travaux de maintenance ou d’un malfonctionnement, certaines transitions devien-
nent inutilisables. Le problème de robustesse à la suppression de transitions a déjà
été étudié pour plusieurs propriétés des graphes [105] et la connexité est une pro-
priété fondamentale qu’on attend des réseaux dans tous les champs d’application
des transitions interdites. Toutefois, ce que nous étudions ici n’est pas le plus pe-
tit nombre de transitions à enlever pour déconnecter le graphe, mais à l’inverse, le
plus petit nombre de transitions à assurer pour garantir la connexité du graphe.
Sans donner d’information pertinente sur la robustesse aux pannes du réseau, cette
grandeur permet toutefois de mettre en évidence quelle partie du réseau sont les plus
importantes à son bon fonctionnement et peut donc s’avérer utile dans la conception

Walks, Transitions and Geometric Distances in Graphs. 3

CONTENTS

de réseau robuste, comme les arbres couvrants sont utiles dans les domaines où les
pannes affectent les arêtes et non pas les transitions.

Cette thèse présente les résultats d’un travail commun avec Benjamin Bergoug-
noux et étudie différents aspects de ce problème. Nous analysons les aspects struc-
turels des ensembles connectants minimaux, et en ressortons une reformulation du
problème sous forme d’un problème de décomposition de graphe que nous appelons
hypergraphes connectants optimaux. Ce nouveau problème s’avère plus facile à ma-
nipuler et se montre d’une grande aide dans les preuves des résultats suivants. Nous
nous intéressons ensuite à l’aspect algorithmique du problème et à sa complexité et
nos résultats principaux sont la preuve de NP-complétude du problème et la mise
au point d’une 3

2 -approximation polynomiale [10].

Graphes géométriques et ensemble évitant la distance 1

La deuxième partie de cette thèse présente les résultats de projets menés avec Chris-
tine Bachoc, Philippe Moustrou, Arnaud Pêcher et Antoine Sedillot sur la densité
maximale qui peut être atteinte par des ensembles de points A de l’espace réel qui ne
contiennent pas deux points à distance exactement 1. Intuitivement, la densité est
la portion d’espace qu’occupe A. La plus grande densité atteignable dépend aussi
de la distance dont on munit Rn. Dans cette thèse, nous ne considérons que des
distances induites par des normes et nous notons cette quantité m1(R

n, ‖ · ‖) où ‖ · ‖
est notre norme sur Rn. La densité maximale des ensembles évitant la distance 1 a
été étudiée depuis au moins le début des années 1960 [91], surtout dans le cas du
plan euclidien, mais s’avère être un problème très difficile qui est encore très ouvert.

Prenons un empilement de disques de rayon 1 (i.e. un ensemble de disques de
rayon 1 deux à deux disjoints). Un exemple d’ensemble qui ne contient pas deux
points à distance 1 est l’union de disques ouverts de rayon 1

2 et de même centre
que les disques de notre empilement. La densité maximale d’un empilement de
disque dans le plan euclidien est d’environ 0.9069 et on sait ainsi que m1(R

2) >
0.9069

4 > 0.2267. Un ensemble réalisant cette borne est illustré en figure 3. La
meilleure borne inférieure est à peine meilleure ; elle a été obtenue par Croft en
1967 en affinant la construction précédente et est d’environ 0.2293. À l’inverse,
les bornes supérieures ont été améliorées plusieurs fois au fil des années mais sont
toujours loin de la borne inférieure. Avant nos travaux, la meilleure borne supérieure
connue était de m1(R

2) 6 0.258795 et a été établie par Keleti et al. en 2015 [70]
à l’aide d’une approche basée sur l’analyse harmonique très différente de la notre.
Dans cette thèse, nous développons une nouvelle approche et améliorons la borne
en m1(R

2) 6 0.256828.

Un objectif important des travaux portant sur ce sujet est de prouver une con-
jecture d’Erdős selon laquelle m1(R

2) < 1
4 . Remarquons que si la norme est telle que

l’ensemble des points à distance 1 de l’origine est un polytope qui pave parfaitement
l’espace (c’est à dire qu’il existe un empilement de polytopes unité de densité 1),
la construction présentée dans le paragraphe précédent produit un ensemble évitant
la distance 1 de densité exactement 1

4 . Ainsi, la conjecture d’Erdős dit que m1 est
plus petit dans le plan euclidien à cause des espaces vides entre les disques d’un
empilement optimal.

4 Thomas Bellitto

CONTENTS

Figure 3: Un exemple d’ensemble évitant la distance euclidienne 1 (en bleu).

Pour progresser vers la conjecture d’Erdős, Bachoc et Robins ont étudié la den-
sité des ensembles évitant la distance 1 pour des distantes induites par des normes
pour lesquelles le polytope unité pave parfaitement l’espace (on appelle de telles
normes des normes paralléloèdres). Ils ont conjecturé que dans ce cas, la construc-
tion précédente était optimale et donc, que si ‖ · ‖P est une norme paralléloèdre,
m1(R

n, ‖ · ‖P) = 1
2n . Dans cette thèse, nous prouvons cette conjecture en dimension

2 ainsi que pour une famille de normes paralléloèdres en dimension quelconque et
nous établissons des bornes sur m1(R

n, ‖ · ‖P) pour une autre famille de normes [5].
Ce problème est étroitement lié au célèbre problème de Hadwiger-Nelson, qui

consiste à déterminer combien de couleurs sont nécessaires pour colorer tous les
points du plan de sorte que deux points à distance exactement 1 n’aient jamais
la même couleur. La figure 4 illustre une coloration d’une portion du plan. Par
exemple, un triangle équilatéral de côté 1 dessiné dans un plan proprement coloré
aura forcément ses trois sommets de couleurs différentes.

Figure 4: Une coloration d’une portion du plan euclidien.

De nombreuses variantes de ce problème ont également été étudiées, parmi
lesquelles la coloration d’espaces munis de distances non-euclidiennes, la coloration
mesurable (où on impose que les classes de couleur soient mesurables) ou encore la
coloration fractionnaire, où l’on cherche le plus petit nombre a

b
tel que a couleurs

différentes soient suffisantes pour donner à chaque point du plan b couleurs distinctes
de façon à ce que deux points à distance 1 n’aient aucune couleur en commun.

Le problème de Hadwiger-Nelson a fait l’objet de nombreux travaux depuis au
moins 1960 [52]. Les bornes inférieures et supérieures de 4 et 7 ont été rapidement
établies, mais personne n’a su les améliorer jusqu’à ce que De Grey prouve en avril
2018 dans [34] qu’au moins 5 couleurs sont nécessaires pour colorer proprement le
plan euclidien.

Walks, Transitions and Geometric Distances in Graphs. 5

CONTENTS

Tous ces problèmes peuvent être reformulés comme des problèmes dans des
graphes géométriques. Le graphe géométrique dont les sommets sont tous les points
de l’espace et dont les arêtes sont les paires de points à distance géométrique 1 est
appelé le graphe distance-unité. La densité des ensembles évitant la distance 1, le
problème de Hadwiger-Nelson et ses variantes reviennent tous à déterminer la valeur
d’invariants de graphes bien connus, tels que le taux de stabilité, le nombre chroma-
tique ou le nombre chromatique fractionnaire, sur le graphe distance-unité du plan
euclidien.

Les graphes distance-unité ont une infinité non dénombrable de sommets et sor-
tent du cadre des mathématiques discrètes dans lequel s’inscrit traditionnellement
la théorie des graphes. Cependant, beaucoup d’informations sur le graphe distance-
unité peuvent être déduites de ses sous-graphes. Par exemple, le triangle équilatéral
représenté en figure 4 définit un sous-graphe complet de taille 3 pour lequel trois
couleurs sont nécessaires. On prouve ainsi qu’au moins trois couleurs sont requises
pour colorer le plan euclidien entier. Nous verrons que des propriétés similaires sont
vérifiées par la densité des ensembles stables (qui sont des ensembles de sommets
deux-à-deux non-adjacents et sont donc directement reliés à m1).

Nous étudions algorithmiquement la notion de taux de stabilité pondéré optimal
et l’utilisons pour étudier les problèmes décrits précédemment. Cette méthode est au
cœur de plusieurs projets en cours et a déjà amené des résultats intéressants. Parmi
ces résultats, on peut citer l’amélioration de la borne supérieure sur m1(R

2), mais
aussi l’amélioration de la borne inférieure sur le nombre fractionnaire chromatique
du plan de 3.61904 [31] à 3.89366 et une borne supérieure sur m1(R

3, ‖·, ‖P) quand
P est un paralléloèdre régulier [4] [11].

Complexité des homomorphismes de graphes

La troisième partie de cette thèse porte sur la complexité de problèmes d’homomor-
phismes de graphes, et plus particulièrement sur les homomorphismes localement
injectifs de graphes orientés. Un homomorphisme de graphe est une fonction des
sommets d’un graphe vers les sommets d’un autre telle que l’image d’une arête est
une arête, ou dans le cas orienté, telle que l’image d’un arc est un arc. Par exemple,
dans la figure 5, la fonction qui associe b, f et g à u, d et e à v, a à w et c à x est un
homomorphisme du graphe représenté en figure 5a vers le graphe de la figure 5b.

b

a

d

c

f

e

g

(a)

v

u

x

w

(b)

Figure 5: On attribue une couleur à chaque sommet du graphe cible (à droite). La
couleur des sommets du graphe de gauche indique leur image par l’homomorphisme.

Les homomorphismes sont une généralisation de la coloration de graphes. Dans
le cas non-orienté, la coloration est le cas particulier d’homomorphisme où chaque

6 Thomas Bellitto

CONTENTS

sommet du graphe cible est relié à chaque autre, mais pas à lui-même. Dans le cas
orienté, les colorations sont définies comme des homomorphismes vers des graphes
qui contiennent exactement un arc entre chaque paire de sommets distincts. De tels
graphes s’appellent des tournois et sont très importants dans l’étude des homomor-
phismes orientés.

Les homomorphismes localement injectifs sont un cas particulier d’homomor-
phismes où on ajoute la contrainte que l’homomorphisme doit être injectif sur le voisi-
nage des sommets du graphe en entrée. Les homomorphismes localement injectifs
sont intéressants du fait qu’ils préservent la structure locale du graphe en entrée bien
mieux que ne le font les homomorphismes standards. Ainsi, les homomorphismes
localement-injectifs trouvent des applications dans une grande variété de domaines,
parmi lesquels la détection de motifs en analyse d’image, la bio-informatique ou
encore la théorie des codes. Cependant, en fonction de ce que l’on veut modéliser,
nos contraintes ne sont pas exactement les mêmes et l’on trouve ainsi plusieurs
définitions de l’injectivité locale dans la littérature. Par exemple, on peut vouloir
que l’homomorphisme soit injectif sur le voisinage ouvert des sommets ou sur leur
voisinage fermé (qui inclut le sommet lui-même). En fonction de la définition, le
fait que sur la figure 5, le sommet g ait la même image que son voisin f peut être
compatible ou non avec le critère d’injectivité locale. De la même façon on peut
imposer que l’homomorphisme soit injectif sur les voisinages entrants et sortants
des sommets séparément ou sur leur union. Ici encore, en fonction de la définition,
le fait qu’un voisin entrant (le sommet b) et qu’un voisin sortant (f) de d aient la
même image peut être autorisé ou non. On choisit en fonction des applications les
propriétés du graphe initial qui doivent être préservées et on choisit la définition
d’injectivité locale qui le permet. Par exemple, si l’homomorphisme est injectif sur
l’union des voisinages entrants et sortants des sommets, on assure que l’image d’un
chemin (une marche où les sommets sont deux à deux distincts) de longueur 2 sera
également un chemin de longueur 2. Néanmoins, renforcer le modèle peut rendre
algorithmiquement plus difficile le problème de déterminer l’existence d’un homo-
morphisme localement injectif entre deux graphes. C’est ce que nous étudions dans
cette partie de la thèse.

L’objectif habituel des études sur la complexité des problèmes comme la k-
coloration ou l’existence d’un homomorphisme vers un graphe G donné est la mise au
point d’un théorème de dichotomie : on partitionne les problèmes en deux classes, on
prouve que ceux de la première classe sont polynomiaux et que ceux de la deuxième
sont NP-complets. Par exemple, dans le cas non-orienté, il est connu que la k-
coloration est polynomiale pour k 6 2 et NP-complète pour k > 2. Hell et Nešetřil
ont prouvé dans [61] que le problème d’homomorphisme vers un graphe non-orienté
G est polynomial si G possède une boucle ou est biparti et NP-complet dans le cas
contraire. Ces résultats sont des théorèmes de dichotomie.

Notre point de départ dans l’étude de la complexité des homomorphismes lo-
calement injectifs est le cas où la cible est un tournoi. En effet, la complexité des
variantes d’homomorphismes étudiées dans la littérature dépend souvent du nombre
chromatique de la cible. Par exemple, dans le théorème de Hell-Nešetřil, les graphes
bipartis sont exactement les graphes 2-colorables. Parmi les quatre définitions non
équivalentes de l’injectivité locale que nous avons recensées dans le cas orienté, la

Walks, Transitions and Geometric Distances in Graphs. 7

CONTENTS

complexité de trois est ouverte dans le cas des tournois. Ces trois définitions sont
équivalentes dans le cas où la cible ne possède pas de boucles et l’une d’elles ne
tient pas compte des boucles sur la cible. Sa complexité est donc impliquée par celle
des deux autres et il nous reste donc à étudier deux définitions d’injectivité locale.
Sous ces définitions, Campbell, Clarke et MacGillivray ont déjà établi dans [20] que
le problème est polynomial vers le tournoi réflexif à deux sommets et NP-complet
vers les deux tournois réflexifs à trois sommets. Cependant, aucun théorème de
dichotomie n’avait émergé sur une classe de tournois infinie avant nos travaux.

Avec Stefan Bard, Christopher Duffy, Gary MacGillivray et Feiran Yang, nous
avons établi un théorème de dichotomie sur la complexité des homomorphismes
localement injectifs vers les tournois réflexifs pour nos deux définitions d’injectivité
locale : dans les deux cas, le problème est polynomial si la cible a deux sommets
ou moins et NP-complet si la cible en a trois ou plus [7]. Nos résultats impliquent
également un théorème de dichotomie sur la complexité des colorations réflexives
localement injectives.

Contenu de la thèse

Le chapitre 1 présente les notions de base que nous utilisons tout au long
de la thèse. Ces notions viennent de domaines variés des mathématiques et de
l’informatique dont la théorie des graphes, de la complexité, la géométrie, la théorie
des langages et la programmation mathématique.

Le chapitre 2 introduit le problème de traffic monitoring, présente le modèle et
les outils que nous développons pour l’étudier et montre comment les utiliser pour
résoudre le problème sur plusieurs types d’instances intéressantes en pratique.

Le chapitre 3 présente le problème d’ensemble de transitions connectant min-
imum, l’étudie sur plusieurs classes de graphes et présente une reformulation, une
approximation polynomiale et une preuve de NP-complétude dans le cas général.

Le chapitre 4 présente le problème de la densité des ensembles évitant la dis-
tance 1 ainsi que son contexte, et notamment le problème de Hadwiger-Nelson. Nous
y présentons une méthode qui utilise des bornes sur le taux de stabilité de graphes
géométriques infinis et l’utilisons pour prouver la conjecture de Bachoc-Robins sur
plusieurs familles de paralléloèdres dont tous ceux de dimension 2, et nous établissons
des bornes supérieures sur m1(R

n, ‖ · ‖) pour d’autres.
Le chapitre 5 présente la notion de taux de stabilité pondéré optimal, l’étudie

sur des graphes géométriques et l’utilise pour étendre les résultats du chapitre
précédent. Ce chapitre contient des améliorations sur la borne du nombre frac-
tionnaire chromatique du plan euclidien et sur la densité des ensembles évitant la
distance 1 dans le plan euclidien et dans l’espace en trois dimensions équipé de
normes paralléloèdres régulières.

Le chapitre 6 présente le problème d’homomorphismes localement injectifs et
les deux définitions que nous considérons et prouve pour les deux un théorème de
dichotomie sur les tournois réflexifs.

Le chapitre 7 conclut la thèse en résumant les contributions principales et en
présentant des problèmes ouverts que nos travaux soulèvent et qui pourraient faire
l’objet de futurs projets.

8 Thomas Bellitto

Introduction

This thesis studies problems and notions that revolve around the mathematical ob-
jects called graphs. Graphs and directed graphs are very powerful models that allow
to describe any binary relation on a set. The elements of this set are called ver-
tices and the pair of related (or adjacent) vertices are called edges. Because of their
expressiveness, graphs find application in a countless variety of fields: information
systems, telecommunication, bio-informatics, image processing, transportation sys-
tems, social networks, scheduling.... among many others. Graphs were introduced
almost three centuries ago and have received ever-increasing attention since, espe-
cially with the emergence of computer science.

More precisely, this thesis pays close attentions to the notions of walks and
distances in graphs and to the combinatorial, algorithmic and complexity aspects of
some of the related problems. A walk in a graph is a sequence of adjacent vertices
that allows to connect two vertices. The number of elements in the walk allows
to define its length and the length of the walks between two vertices leads to the
definition of their distance. We closely study geometric graphs, which are graphs
whose vertices are point of the real space. The connection between the distance
defined by the adjacency in the graph and the geometric distance will be of great
interest to us. Our works also involve extensively other well-known notions of graph
theory, such as independent sets, graph colourings and homomorphisms.

The problems and results presented in this thesis can be divided into three parts.

Transitions in graphs

The first part focuses on the model of forbidden-transition graphs. The strength
of the models of graphs and walks makes them the model of choice to address
routing problems in various contexts. For example, the road network in a city can
be modelled by a graph where every potential destination or crossroad is denoted by
a vertex and roads between two vertices, by edges (or arcs if the road is halfway).
We thereby implicitly define a set of possible walks between each pair of vertices
that can then be used for many purposes. Examples include several optimization
problem, such as finding the shortest walk between two points, avoiding traffic jams,
or monitoring and separating a set of possible walks. However, in practice, many
of the walks that the graph defines denote routes that drivers are not allowed to
take. To model a situation where a driver may not turn left or right at a given
crossroad, we define a transition in a graph as a pair of consecutive edges. The
study of forbidden-transition graphs, where graphs are defined together with a set of

9

permitted or forbidden transitions, is a fast emerging area of graph theory. Several
other related models are also widely studied, such as properly coloured walks in
edge-coloured graphs and graphs with forbidden subpaths.

The first of the two main problems related to forbidden transitions that we study
in this thesis is called traffic monitoring. Here, we are given a graph in which objects
can walk and we know which walks these objects can use. We have the possibility to
place censors on the arcs of the graph that indicate when an object goes through an
equipped arc. Hence, for each object, we know the ordered sequence of equipped arcs
they have used. Our objective is to find how to equip as few arcs as possible with
censors in such a way that the information that the censors return is still sufficient
to determine exactly which route the object has taken. For example, consider the
graph depicted in Figure 1 and let the arcs tu, vw and wx be equipped with censors
that we call a, b and c respectively. An object that uses the walk (t, u, v, w, x, z)
would activate successively the censors a, b and c. An object that uses the walk
(t, u, w, x, y, v, w, z) activates the same censors but activates the censor c before b.
Thus, the set of censors {a, b, c} allows to distinguish those two walks.

t

z

u

w

x

v

y

a

b

c

Figure 1: A graph with three monitored arcs depicted in blue.

The complexity of this problem had already been studied in [85], but prior to
our work, the only algorithms that had been designed [88] focused on the special
case of acyclic graph, in which walks are very limited and cannot use twice the same
vertex or arc.

The traffic monitoring problem requires to find efficient ways to describe sets of
walks in a graph, which we do by using tools stemming from language theory. We
draw parallels between the problem of traffic monitoring and the well-known problem
of separating code by developing a new model of separation based on languages,
which allows us to take into account the number of times and the order in which
the censors are activated. We then try to identify which kind of instances can be
relevant for the practical applications of traffic monitoring and use their specificity
to develop solutions as efficient as possible. This is where the model of forbidden
transitions comes useful. We study several kinds of instances, some of which involve
forbidden transitions and we develop algorithms to reformulate traffic monitoring as
an integer linear program [9].

The other problem that we study in this part of the thesis is called minimum
connecting transition set and can be seen as an adaptation with transitions of the
well-known minimum spanning trees. Given a connected graph, a minimum spanning
tree is a subset of edges of minimum size that keeps the graph connected i.e. such

10 Thomas Bellitto

Introduction

that there exists a walk between every pair of vertices that only uses edges of the
minimum spanning tree. Similarly, a minimum connecting transition set is a set of
transition as small as possible such that there exists a walk between every pair of
vertices that only uses transitions of the minimum connecting transition set. Note
that according to the standard definition of transitions in undirected graphs, using
twice the same edge in a row is not a transition and is always permitted. For example,
consider the graph depicted in Figure 2 where the two permitted transitions are uvy
and wvy. There are permitted walks leading from the vertex w to any other vertex
of the graph: the walks (w, v) and (w, x) do not even require a transition, the walk
(w, v, y) uses a permitted transition and while the walk (w, v, u) is forbidden, one
can still go from w to u by using the walk (w, v, y, v, u). However, there is no way
to go from x to u or y and the transition set {wvy, uvy} is therefore not connecting.
This can be fixed for example by adding the transition uvx.

u

x w

v y

Figure 2: A graph with two permitted transitions depicted in green.

In many of the application fields where the model of transitions is relevant (such
as road networks, transportation systems or optical telecommunication networks),
it is possible that because of maintenance work or malfunction, some transitions be-
come unusable. The problem of robustness to the removal of transitions has already
been studied with several graph properties [105] and connectivity is an important
requirement of the networks in every application fields of graphs with forbidden
transitions. Here, what we study is not the smallest number of transitions that has
to break down to disconnect the graph but the smallest number of transitions we
have to secure for the graph to stay connected. While this does not provide an
interesting measure of the robustness of the network, it highlights which parts of a
network are the most useful for its proper functioning and can thus help designing
robust network, like minimum spanning trees help in the cases where breakdowns
impact edges and not transitions.

This thesis presents the results of joint work with Benjamin Bergougnoux and
studies several aspects of the problem. We investigate structural aspects of minimum
connecting sets, which leads to a reformulation of the problem as a problem of graph
decomposition that we call optimal connecting hypergraph. This new problem turns
out to be easier to manipulate and of great help in the subsequent proofs. We
then study the problem under its algorithmic and complexity aspects and our main
results are the establishment of its NP-completeness and the design of a polynomial
3
2 -approximation [10].

Walks, Transitions and Geometric Distances in Graphs. 11

Geometric graphs and sets avoiding distance 1

The second part of this thesis presents the results of joint projects with Christine
Bachoc, Philippe Moustrou, Arnaud Pêcher and Antoine Sedillot on the maximum
density that can be achieved by a set of points A of the real space that does not
contain two points at geometric distance exactly 1. Intuitively, the density denotes
the portion of space that A fills. This maximum density also depends on the distance
we use on Rn. Throughout this thesis, we only consider distances induced by norms
and we denote this number by m1(R

n, ‖ · ‖) where ‖ · ‖ is the norm Rn is equipped
with. The maximum density of sets avoiding distance 1 has been studied since at
least the early 1960’s [91] especially in the Euclidean plane, but turns out to be a
very difficult problem and is still wide open.

Consider a packing of discs of radius 1 (i.e. a set of discs of radius 1 that do
not overlap). An example of set that does not contain two points at distance 1 is
the union of open discs of radius 1

2 and of same center as the discs of our packing.
The optimal density of a packing of discs in the Euclidean plane is about 0.9069
and we thus know that m1(R

2) >
0.9069

4 > 0.2267. A set achieving this density is
illustrated in Figure 3. The best known lower bound is barely better; it was obtained
by Croft in 1967 by refining the previous construction and is of about 0.2293. On
the other hand, upper bounds have been improved more often through the years
but are still far from the lower bounds. Prior to our works, the best upper bound
was m1(R

2) 6 0.258795 and was established by Keleti et al. in 2015 [70] through
an approach based on harmonic analysis very different from ours. In this thesis, we
develop a new approach and improve the bound to m1(R

2) 6 0.256828.

Figure 3: An example of set avoiding Euclidean distance 1 (in blue).

An important objective of the works that have been carried out on this topic is to
prove a conjecture by Erdős that m1(R

2) < 1
4 . Note that if the norm is such that the

set of points at distance 1 from the origin is a polytope that tiles the space perfectly
(i.e. there exists a packing of unit polytopes of density 1), the construction described
in the previous paragraph leads to a set avoiding distance 1 of density exactly 1

4 .
Thus, the conjecture of Erdős says that m1 is lower with the Euclidean norm because
of the empty space between the unit discs of an optimal packing,

As a step toward Erdős’ conjecture, Bachoc and Robins started studying the
density of sets avoiding distance 1 for distance induced by norms whose unit poly-
topes perfectly tile the space (such norms are called parallelohedron norms). They
conjectured that in this case, the construction described previously of sets avoid-
ing distance 1 was optimal, and thus, that if ‖ · ‖P is a parallelohedron norm,

12 Thomas Bellitto

Introduction

m1(R
n, ‖ · ‖P) = 1

2n . In this thesis, we prove this conjecture in dimension 2 as well
as for a family of n-dimensional parallelohedron norms, and establish bounds on
m1(R

n, ‖ · ‖P) for an other [5].

This problem is closely related to the famous Hadwiger-Nelson problem that
aims at determining how many colours are needed to colour all the points of the
Euclidean plane in such a way that no two points at distance exactly one receive the
same colour. Figure 4 depicts a colouring of a portion of the plane. For example,
every equilateral triangle of diameter 1 drawn in a properly-coloured plane has its
three vertices of different colours.

Figure 4: A colouring of a portion of the Euclidean plane.

Many variants of this problem have also been studied, including the colouring
of other spaces or of space equipped with non-Euclidean distances, the measurable
colouring (where we require the colour classes to be measurable), and the fractional
colouring where we look for the smallest number a

b
such that we can give b different

colours to all the points of a space chosen among a set of possible colours of size a,
in such a way that no two points at distance exactly one share a common colour.

The problem of Hadwiger-Nelson has received a lot of attention since at least
1960 [52]. Lower and upper bounds of 4 and 7 were quickly established, but no one
has been able to improve them until De Grey proved in April 2018 in [34] that at
least 5 colours are needed to properly colour the Euclidean plane.

All these problems can be reformulated as problems in geometric graphs. The
geometric graph whose vertices are all the points of the space and whose edges are
the pairs of points at geometric distance 1 is called the unit-distance graph. The
density of sets avoiding distance 1, the Hadwiger-Nelson problem and its variants
all come down to determining the values of well-known graph invariants such as the
independence ratio, the chromatic number or the fractional chromatic number of
the unit-distance graph of the Euclidean plane.

Unit-distance graphs have uncountably many vertices and bring us out of the
range of discrete mathematics in which graph theory is traditionally considered to
belong. However, many information on the unit-distance graph can be inferred from
its subgraphs. For example, the equilateral triangle depicted in Figure 4 provides a
complete subgraph of size 3, for which three colours are required. This also proves
that at least three colours are needed to colour the entire Euclidean plane. We will
see that similar properties holds for the density of independent sets (sets of pairwise
non-adjacent vertices, which are thus directly related to m1).

Walks, Transitions and Geometric Distances in Graphs. 13

We study algorithmically the notion of optimal weighted independence ratio of
a graph and use it to study the aforementioned problems. This method is at the
core of several still ongoing projects and has already provided interesting results.
Those results include the improvement of the upper bound on m1(R

2) but also the
improvement of the best lower bound on the fractional chromatic number of the
plane from 3.61904 [31] to 3.89366 and an upper bound on m1(R

3, ‖·, ‖P) when P is
a regular parallelohedron [4] [11].

Complexity of graph homomorphisms

The third part of this thesis studies the complexity of graph homomorphism prob-
lems, and especially of locally-injective directed graph homomorphisms. A graph
homomorphism is a function from the vertex set of a graph to the vertex of a second
graph such that the image of an edge is an edge, or in the directed case, such that
the image of an arc is an arc. For example, in Figure 5, the function that maps b,
f and g to u, d and e to v, a to w and c to x is a homomorphism from the graph
depicted in Figure 5a to the graph depicted in Figure 5b.

b

a

d

c

f

e

g

(a)

v

u

x

w

(b)

Figure 5: We attribute a colour to each vertex of the target graph (on the right).
The colour of the vertices of the graph on the left indicates their image by the
homomorphism.

Homomorphisms generalize graph colouring. In the undirected case, colouring
is a specific case of graph homomorphism where every vertex of the target graph
is connected to every other but not to itself. In the directed case, colourings are
defined as homomorphisms to graphs where there is exactly one arc between each
pair of distinct vertices. Such graphs are called tournaments and are very important
in the study of directed homomorphisms.

Locally-injective homomorphisms are a specific case of homomorphisms where we
add the constraint that the homomorphism must be injective on the neighbourhood
of the vertices of the input graph. Locally-injective homomorphisms are interesting
because they preserve the local structure of the input graph much better than stan-
dard homomorphisms. Hence, locally-injective homomorphisms find application in a
wide range of areas including pattern detection in image processing, bio-informatics
or coding theory. However, depending on what we want to model, our constraints
are not exactly the same and we can thus find several definitions of local injectivity
in the literature. For example, we can ask the homomorphism to be injective either
on the open neighbourhood of the vertices or on their close neighbourhood (which
includes the vertex itself). Hence, depending on the definition, the fact that in Fig-
ure 5, the vertex g has the same image as its neighbour f may or may not violate the

14 Thomas Bellitto

Introduction

injectivity requirement. Similarly, we may ask the homomorphism to be injective on
the in- and out-neighbourhoods of the vertices separately or on their union. Here
again, depending on the definition, the fact that an in-neighbour (the vertex b) and
an out-neighbour (f) of d have the same image may or may not be allowed. We
choose depending on the applications which properties of the initial graph have to
be preserved by the locally-injective homomorphism and we choose our definition of
local injectivity accordingly. For example, if the homomorphism is injective on the
union of the in- and out-neighbourhoods of vertices, we can ensure that the image
of a path (a walk whose vertices are pairwise distinct) of length 2 is also a path
of length 2. However, strengthening the model might also make the algorithmic
problem of determining the existence of a locally-injective homomorphism between
two graphs more difficult. This is what we study in this part of the thesis.

When studying the complexity of problems such as k-colouring or homomorphism
to a given graph G, the objective is to establish what we call a dichotomy theorem:
we partition the problems into two classes, prove that the problems of the first
one are polynomial and that the problem of the other ones are NP-complete. For
example, in the undirected case, it is well-known that k-colouring is polynomial
for k 6 2 and NP-complete for k > 2. Hell and Nešetřil have proved in [61] that
undirected homomorphism to a graph G is polynomial if G has a loop or is bipartite
and NP-complete otherwise. These results are dichotomy theorems.

Our starting point in the study of the complexity of locally-injective homomor-
phisms is the case where targets are tournaments. Indeed, the complexity of the
variants of homomorphisms studied in the literature often depends on the chromatic
number of the target. For example, in the Hell-Nešetřil theorem, bipartite graphs
are exactly the 2-colourable graphs. Among the four non-equivalent definitions of
local injectivity that we know of in the directed case, the complexity of three is open
in the case of tournaments. Those three definitions are equivalent in the case of a
loopless target and one of them does not take into account the loops on the target.
Its complexity is therefore implied by the complexity of the other two and we are
left with two definitions of local injectivity to study. Under those definitions, Camp-
bell, Clarke and MacGillivray have already established in [20] that the problem is
polynomial on the reflexive tournament on two vertices (reflexive tournaments are
the ones that have loops on every vertex) and NP-complete on the two reflexive
tournaments on three vertices. However, no dichotomy theorem on an infinite class
of tournaments had emerged prior to our work.

Jointly with Stefan Bard, Christopher Duffy, Gary MacGillivray and Feiran
Yang, we successfully established a dichotomy theorem on the complexity of locally-
injective homomorphisms to reflexive tournaments for our two definitions of local
injectivity: in both case, the problem is polynomial if the target has two vertices or
fewer and NP-complete if the target has three vertices or more [7]. Our results also
imply a dichotomy theorem on the complexity of locally-injective reflexive colouring.

Outline of the thesis

Chapter 1 introduces basic notions that we use throughout this thesis. Those
notions come from various areas of mathematics and computer science, including

Walks, Transitions and Geometric Distances in Graphs. 15

graph theory, complexity theory, geometry, language theory and mathematical pro-
gramming.

Chapter 2 introduces the problem of traffic monitoring, presents the model and
the tools that we have developed to address it and shows how to use them to solve
the problem on several kind of instances of practical interest.

Chapter 3 introduces the problem of minimum connecting transition set, studies
it on several classes of graphs, presents a reformulation, a polynomial approximation
and a proof of NP-completeness in the general case.

Chapter 4 presents the problem of the density of sets avoiding distance 1 and its
context, including the related problem of Hadwiger-Nelson. We present a method
that requires to bound the independence ratio of infinite geometric graphs and we
use it to prove the Bachoc-Robins conjecture on several families of parallelohedra
including all those in dimension 2 and to establish upper bounds on m1(R

n, ‖ · ‖)
for some others.

Chapter 5 presents the notion of optimal weighted independence ratio, studies it
on geometric graphs and uses it to extends the results of the previous chapter. This
chapter contains improvement of the bounds on the fractional chromatic number of
the Euclidean plane and on the density of sets avoiding distance 1 in the Euclidean
plane and in the 3-dimensional space equipped with regular parallelohedron norm.

Chapter 6 presents the problem of locally-injective homomorphisms and the two
definitions that we consider and proves for both of them a dichotomy theorem on
reflexive tournaments.

Chapter 7 concludes this thesis by summing up the main contributions and pre-
senting some open problems that our work raises and that may be at the core of
future works.

16 Thomas Bellitto

Chapter 1

Preliminaries

This chapter introduces notions and results from different areas of computer science
and mathematics that we need throughout this thesis. Its purpose is also to fix
notations and definitions for which different variants can be found in the literature.

Section 1.1 presents generic notions of graph theory that are at the core of all the
work we present in this thesis. Section 1.2 presents basic notions of complexity that
we use throughout this thesis and introduces the notion of NP-completeness that is
fundamental in Chapters 3 and 6. Section 1.3 extends Section 1.1 by presenting basic
notions of graph theory but also presents the emerging field of forbidden-transition
graphs. Those notions are crucial in Chapters 2 and 3. Section 1.4 introduces key
notions of geometry and number theory and especially studies parallelohedra. The
notions developed in this section play an important role in Chapters 4 and 5. Section
1.5 presents fundamentals of language theory and notably introduces tools that are
extremely useful in Chapter 2 to describe sets of walks in a graph. Finally, Section
1.6 introduces a very powerful optimization technique called linear programming.
Due to their efficiency and expressive power, linear programs are used in practice in
a wide range of areas and are very important in Chapters 2 and 5 of this thesis.

Contents

1.1 Fundamentals of graph theory 18

1.2 Elements of complexity . 30

1.3 Walks, connectivity and transitions 33

1.4 Polytopes and lattices . 38

1.5 Rational languages and automata 45

1.6 Linear programming . 50

Common mathematical notations

The cardinality of a set S is noted |S| and its powerset is noted P(S). We use
the notation [a, b],]a, b[and [a, b[or]a, b] for closed, open and semi-open intervals
respectively. Integer intervals are noted [[a, b]].

We say that a set S that has a given property is maximal (respectively minimal)
if none of its supersets (resp. subsets) possess this property. We say it is maximum

17

1.1. Fundamentals of graph theory

(resp. minimum) if no set of strictly bigger (resp. smaller) cardinality has this
property.

When working in Rn, we may denote by 0 the vector (0, 0, . . . , 0).

We denote by P(A) the probability of an event A and by E[X] the expected value
of a random variable X.

The limit superior of a sequence U is noted lim sup
n→∞

Un and is the supremum of

the limits achieved by subsequence of U .

1.1 Fundamentals of graph theory

For a standard introduction to graph theory, we refer the reader to [36].

1.1.1 Core definitions

Undirected graphs. A graph G (sometimes referred to as a simple graph to avoid
any ambiguity) is an ordered pair (V,E) where V is a non-empty finite set whose
elements are called vertices and E is a set of unordered pairs of vertices whose
elements are called edges. We can simply write uv to denote the edge {u, v}. The
vertices u and v are the endpoints of the edge uv. The edge uv is incident to the
vertices u and v. To avoid ambiguities, we may denote respectively by V (G) and
E(G) the sets of vertices and edges of a graph G.

A vertex u is a neighbour of a vertex v if and only if {u, v} ∈ E. The open
neighbourhood of a vertex v, noted N(v), is the set {u : uv ∈ E} and the closed
neighbourhood of a vertex v, noted N [v], is the set N(v) ∪ {v}. If {u, v} ∈ E, u and
v are adjacent and two edges are adjacent if they have a common endpoint.

The degree of a vertex v in a simple graph is noted d(v) and is its number
of neighbours. The maximum degree and minimum degree of a graph G, denoted
respectively by ∆(G) and δ(G), are the maximum and minimum degree of a vertex
of the graph.

A multigraph is a graph that may have loops and parallel edges. A loop is an
edge whose two endpoints are the same vertex and parallel edges, also called multiple
edges, are edges that have the same endpoints. Formally, a multigraph is also defined
as an ordered pair (V,E) but here, edges are multisets of vertices of cardinality 2
and E is a multiset of edges.

Example 1.1.

Let us consider the graph G depicted in Figure 1.1. Here, V (G) = {u, v, w, x, y}
and E(G) = {uv, uw, vx,wx,wy}. The open neighbourhood of v is N(v) = {u, x}
and v therefore has degree 2. The maximum and minimum degrees of the graph are
respectively 3 and 1 and are achieved by w and y respectively.

The work presented in this thesis also involves directed graphs. We now translate
the basic notions of undirected graphs into the case of directed graphs.

Directed graphs. A directed graph G (or simple directed graph) is an ordered
pair (V,A) where V is a non-empty finite set whose elements are called vertices and

18 Thomas Bellitto

1. Preliminaries

u v

w x

y

Figure 1.1: A simple graph G. The neighbours of v are depicted in red.

A is a set of ordered pairs of vertices whose elements are called arcs. As previously,
we may simply write uv to denote the arc (u, v) and we denote respectively by V (G)
and A(G) the sets of vertices and arcs of a graph G. The vertex u is the origin of
the arc uv and v is its target . Two arcs a and b are consecutive if and only if the
target of a is the origin of b. The arcs (u, v) and (v, u) are opposite.

A vertex u is an in-neighbour of a vertex v if and only if (u, v) ∈ A and u is an
out-neighbour of a vertex v if and only if (v, u) ∈ A. The vertex u is a neighbour
of v if and only if u is an in- or an out-neighbour of v. The open neighbourhood,
open in-neighbourhood and open out-neighbourhood of a vertex v are denoted re-
spectively by N(v), N−(v) and N+(v). The closed neighbourhood N [v], the closed
in-neighbourhood N−[v] and the closed out-neighbourhood N+[v] are defined as pre-
viously.

The number of in- and out-neighbours of a vertex v are noted d−(v) and d+(v)
respectively and are called in-degree and out-degree of v.

An arc from a vertex to itself is called a loop. Observe that even simple directed
graphs have loops since (u, u) is an ordered pair of vertices. The existence of an
arc from a vertex u to a vertex v defines a relation on the vertex set of G. Thus, a
graph is irreflexive if no vertex has a loop and reflexive if every vertex has a loop.
A directed graph is symmetric if ∀(u, v) ∈ A, (v, u) ∈ A too. We define directed
multigraphs as an ordered pair (V,A) where A is a multi-set of arcs (and arcs are
still ordered pair of vertices). This definition thus allows parallels arcs.

The following subclass of directed graphs plays an important role in the study
of graph homomorphisms.

Definition 1.2. Oriented graphs:
A directed graph is an oriented graph if and only if it has no pair of opposite

arcs i.e. if there are no vertices u 6= v such that uv and vu ∈ A. An oriented graph−→
G is an orientation of an undirected graph G if and only if V (

−→
G) = V (G) and

E(G) = {{u, v} : (u, v) ∈ A(
−→
G) or (v, u) ∈ A(

−→
G)}.

Example 1.3.
In the graph G1 depicted in Figure 1.2a, w is an in-neighbour of v, u is an out-

neighbour of v and x is both. There is a pair of opposite arcs between v and x and
another between w and y. Hence, the graph G1 is not oriented. If we remove an arc

Walks, Transitions and Geometric Distances in Graphs. 19

1.1. Fundamentals of graph theory

u v

w x

y

(a) A directed graph G1.

u v

w x

y

(b) An oriented graph G2.

Figure 1.2

in each pair of opposite arcs, G1 becomes oriented but is still not an orientation of
the graph G depicted in Figure 1.1 because G has no edge between w and v.

The graph G2 depicted in Figure 1.2b is an orientation of the graph G depicted
in Figure 1.1.

We now present the notions of subgraphs and complementary graphs that apply
to both directed and undirected graphs.

Subgraphs and induced subgraphs. Let G be a graph. The graph H is a
subgraph of G if and only if V (H) ⊂ V (G) and E(H) ⊂ E(G).

Let S ⊂ V be a subset of vertex of G. The subgraph of G induced by S, noted
G[S], is the graph whose vertex set is S and whose edge set is {uv ∈ E(G) : (u, v) ∈
S2}. The graph H is an induced subgraph of G if and only if H = G[V (H)].

Let v ∈ V . We denote respectively by G−S and G− v the graphs G[V \S] and
G[V \ {v}].

Example 1.4.

u v

w x

y

(a) A graph G.

u v

w

(b) A graph H1.

u v

x

(c) A graph H2.

u v

x

(d) A graph H3.

Figure 1.3

The graph H1 depicted in Figure 1.3b is a subgraph of the graph G in Figure
1.3a but not an induced subgraph. Indeed, the vertex set {u, v, w} induces the edge
uw. The graph H2 depicted in Figure 1.3c is the subgraph of G induced by {u, v, x}.
The graph H3 in Figure 1.3d contains the edge ux which is not in G ; H3 is therefore
not a subgraph of G.

20 Thomas Bellitto

1. Preliminaries

Complement of a graph. Let G be a graph. The complementary graph of G,
noted G, is the graph defined by V (G) = V (G) and E(G) = {uv : uv /∈ E(G)}.

Example 1.5. Figure 1.4 depicts a graph and its complement.

u v

w x

y

(a) A graph G.

u v

w x

y

(b) Its complementary graph G.

Figure 1.4

We now introduce some key families of graphs that are useful throughout this
thesis.

Some basic graph families.

• A path of n vertices, noted Pn, is the graph defined by V (Pn) = {v0, . . . , vn−1}
and E(Pn) = {vivi+1 : 0 6 i 6 n− 2}.

• A cycle of n vertices, noted Cn, is the graph defined by V (Cn) = {v0, . . . , vn−1}
and E(Cn) = {viv(i+1) mod n : 0 6 i 6 n− 1}.

• A complete graph of n vertices, noted Kn, is the graph defined by V (Kn) =
{v0, . . . , vn−1} and E(Kn) = {vivj : i 6= j}.

• A graph G = (V,E) is bipartite if there exists a partition of V into two sets
V1 and V2 such that every edge of G has one endpoint in V1 and one in V2.
If in addition, ∀u ∈ V1,∀v ∈ V2, uv ∈ E, the graph is complete bipartite. We
denote by Ki,j the complete bipartite graph with |V1| = i and |V2| = j.

• A star of n+1 vertices or star with n branches, noted Sn, is the graph defined
by V (Sn) = {c, v1, v2, . . . , vn} and E(Sn) = {cvi : i ∈ [[1, n]]}. The vertex c is
the center of the star. Note that Sn = K1,n.

• A tournament on n vertices is an orientation of the complete graph of n ver-
tices Kn. If n > 3, there are several tournaments on n vertices. Note that
tournaments are by definition irreflexive but we can also define reflexive tour-
naments as tournaments where we add a loop on every vertex.

Example 1.6. Figure 1.5 illustrates the aforementioned graph classes.

We conclude this subsection by introducing the notion of planarity.

Walks, Transitions and Geometric Distances in Graphs. 21

1.1. Fundamentals of graph theory

v3 v4

v1 v2

(a) K4.

v3 v4

v1 v2

c

(b) S4 = K1,4.

v4 v3

v5 v2

v1

(c) P5.

v3 v4

v1 v2

(d) C4 = K2,2.

v3 v4

v1 v2

(e) A tournament on 4 vertices.

Figure 1.5

Definition 1.7. Planar graphs:

A planar embedding of a graph G is a drawing of the graph in the plane such
that no two edges of G intersect each other. A planar graph is a graph that can be
embedded in the plane. A co-planar graph is a graph whose complement is planar.

Example 1.8.

The drawing of K4 depicted in Figure 1.5a is not a planar embedding since the
edge v1v4 crosses the edge v2v3. However, the graph K4 is still planar, as illustrated
by Figure 1.6a.

Figure 1.6b depicts a planar embedding of K2,4 and we can prove more generally
that K2,n is planar for all n.

The graphs K5 and K3,3 are famous examples of non-planar graphs.

v3 v4

v1

v2

(a) A planar embedding of K4.

v1

v5

v4

v3

v2

v6

(b) A planar embedding of K2,4.

Figure 1.6

22 Thomas Bellitto

1. Preliminaries

1.1.2 Homomorphisms and colouring

This subsection presents the notion of graph homomorphism and its relation to
graph colourings, which is central to Chapter 6.

Definition 1.9. Undirected graph homomorphisms:
A homomorphism from an undirected graph G1 = (V1, E1) to G2 = (V2, E2),

also called G2-colouring of G1, is a function f : V1 → V2 such that ∀{u, v} ∈ E1,
{f(u), f(v)} ∈ E2. The graph G2 is called the target of the homomorphism.

The famous problem of graph colouring is a specific case of homomorphism.

Definition 1.10. Undirected n-colouring:
A n-colouring of an undirected graph G = (V,E), sometimes called proper n-

colouring to avoid any ambiguity, is a function c : V → {c1, . . . , cn} such that
∀{u, v} ∈ E, c(u) 6= c(v). The elements c1, . . . , cn are called colours.

Finding a n-colouring of a graph G comes down to finding a homomorphism from
G to the irreflexive complete graph on n vertices Kn.

If there exists a n-colouring of a graph G, G is n-colourable. The smallest number
n such that G is n-colourable is called the chromatic number of G and is noted χ(G).
If G is n-colourable but not (n− 1)-colourable, G is n-chromatic.

The sets Ci = {v ∈ V : c(v) = ci} of vertices of the same colour are called colour
classes.

Example 1.11.

v0 v1

v4

v3

v2

v5

Figure 1.7: A 2-colouring of an undirected graph G.

Figure 1.7 presents a 2-colouring of a graph G. Since G is not 1-colourable, it is
2-chromatic.

While the definition of homomorphism is straightforward to generalize to the
oriented case (the image of an arc must be an arc), the generalization of colouring is
a little more subtle. Indeed, a n-colouring of an undirected graph G is a homomor-
phism from G to Kn and a n-colouring of an oriented graph G is a homomorphism
from G to an orientation of Kn (i.e. a tournament on n vertices). However, while
there is only one complete graph of n vertices, there are exponentially many tour-
naments. Colouring of an oriented graph consists of finding not only the colouring
function but also the target tournament. For example, once we have coloured the
two endpoints of an arc (u, v), we know that there must be an arc from f(u) to f(v)

Walks, Transitions and Geometric Distances in Graphs. 23

1.1. Fundamentals of graph theory

in the target tournament. Hence, there cannot be an arc from f(v) to f(u). We end
up with the following equivalent definition:

Definition 1.12. Oriented graph homomorphisms and colouring:
An homomorphism from an oriented graph G1 = (V1, A1) to G2 = (V2, A2),

also called G2-colouring of G1, is a function f : V1 → V2 such that ∀(u, v) ∈ A1,
(f(u), f(v)) ∈ A2.

A n-colouring or proper n-colouring of an oriented graph G = (V,E) is a function
c : V → {c1, . . . , cn} such that

{

∀(u, v) ∈ A, c(u) 6= c(v)

∀(u, v) ∈ A,∀(x, y) ∈ A, c(u) 6= c(y) or c(v) 6= c(x)

The notion of n-colourability, n-chromaticity, chromatic number and colour classes
are defined similarly as in the undirected case.

Oriented colourings have been introduced by Courcelle to study monadic second
order logic in graphs [30]. Its purpose was to create a labelling of the vertices of the
graph that would determine the orientation of the arcs.

Example 1.13.

v0 v1

v4

v3

v2

v5

(a) A 4-colouring of an oriented graph G. (b) The target tournament T .

Figure 1.8

Let us try to colour the graph G depicted in Figure 1.8a. We can pick arbitrarily
the colour of v1, say blue. The vertex v0 can then be any colour but blue, let us say
it is red. At this point, we know that the arc between the blue and red vertex in
the target tournament goes from the red vertex to the blue. Thus, the vertices v2,
v3 and v4 cannot be red. We pick the colour yellow for v2. The vertex v5 cannot be
yellow (it has a yellow neighbour) nor blue (it has a yellow in-neighbour which is not
compatible with the orientation of the blue-yellow arc in the target tournament),
but it can be red. The vertex v3 has the same in- an out-neighbour as v2 and can
therefore have the same colour. However, the vertex v4 can neither be red nor blue
because it already has blue and red neighbours and it cannot be yellow because
it has a red in-neighbour. Hence, we need a fourth colour for v4. We can pick
arbitrarily the orientation of the arc between the yellow and the green vertex in the
target tournament (depicted in Figure 1.8b). We have exhibited a 4-colouring of G
and proved that G cannot be coloured with three colours or less and is therefore
4-chromatic.

24 Thomas Bellitto

1. Preliminaries

Note that a directed graph that has opposite arcs between the vertices u and v
cannot be coloured because it would require the target tournament to have an arc
from f(u) to f(v) and one from f(v) to f(u), which is impossible. Finally, note
that G2-colouring is trivial if G2 has a loop on a vertex v. Indeed, the function f
that maps every vertex to v is a homomorphism. This is why directed colouring is
defined as a homomorphism from an oriented graph to an irreflexive tournament.

We now present a variant of colouring called edge-colouring. This variant is
especially useful to study the complexity of homomorphisms problems.

Definition 1.14. Edge-colouring:
A k-edge-colouring (sometimes called proper k-edge-colouring) of a graph G =

(V,E) is a function c : E → {c1, . . . , cn} such that if two edges e1 and e2 are
adjacent, then c(e1) 6= c(e2). The k-edge-colourability, the k-edge-chromaticity and
the edge-chromatic number are defined similarly.

Let G be a graph. The line graph of G is the graph H such that V (H) = E(G)
and two vertices of H are adjacent in H if and only if they denote adjacent edges in
G. One can notice that edge-colouring G comes down to colouring its line graph.

Example 1.15.
Figure 1.9 illustrates the connection between colouring and edge-colouring.

e1

e2
e3

e4

e5

e6
e9

e8
e7

(a) A graph G.

e1

e3

e2

e6

e5

e4

e9

e7

e8

(b) The line graph of G.

Figure 1.9: An illustration of a proper 3-edge-colouring of a graph G and the asso-
ciated 3-colouring of its line graph.

Finally, we present the notion of automorphism which greatly helps study the
symmetry of a graph.

Definition 1.16. Isomorphisms, automorphisms and orbits:
An isomorphism from a graph G1 = (V1, E1) to G2 = (V2, E2) is a bijection

f : V1 → V2 such that ∀(u, v) ∈ V 2
1 , {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2.

Note that the inverse function of an isomorphism from G1 to G2 is an isomorphism
from G2 to G1. Two graphs are said to be isomorphic if and only if there exists an
isomorphism from one to the other.

An automorphism is an isomorphism from a graph G = (V,E) to itself. The
automorphisms of a graph form a group under composition. Two vertices u and v
are in the same orbit if and only if there exists an automorphism f of G such that
f(u) = v. One can easily prove that this is an equivalence relation and since orbits
are equivalence classes, they define a partition of the vertices of a graph. If all the
vertices of the graph are in the same orbit, the graph is vertex-transitive.

Walks, Transitions and Geometric Distances in Graphs. 25

1.1. Fundamentals of graph theory

We can define analogously orbit of edges by stating that two edges {u, v} and
{w, x} are in the same orbit if there exists an automorphism such that {f(u), f(v)} =
{w, x}. If all the edges of the graph are in the same orbit, the graph is edge-transitive.

Example 1.17.

v6

v2 v3v1

v5 v4

(a) A graph G and a representation of its
orbits.

w6

w2 w3w1

w5 w4

(b) A graph H isomorphic to G.

Figure 1.10

The function f such that f(v1) = w1, f(v2) = w5, f(v3) = w3, f(v4) = w6,
f(v5) = w2 and f(v6) = w4 is an isomorphism from the graph G depicted in Figure
1.10a to the graph H depicted in Figure 1.10b. The function f1 : V (G) → V (G) that
transposes v1 with v3 and v4 with v6 is an automorphism of G. So are the function
f2 that transposes v1 with v6, v2 with v5 and v3 with v4 and the function f3 = f1◦f2.
Those automorphisms prove that v1, v3, v4 and v6 are in the same orbit and that v2
and v5 are in the same orbit. Since deg(v1) 6= deg(v2), no automorphism can map
v1 to v2 and G has exactly two orbits. The orbit of edges are {v1v2, v2v3, v4v5, v5v6},
{v1v6, v3v4} and {v2v5}.

The graph depicted in Figure 1.9 is vertex-transitive but not edge-transitive.
Indeed, the edges e4, e5 and e6 belong to no triangle while the six others do. The
graph S4 (see Figure 1.5b) is edge-transitive but not vertex-transitive. The graphs
K4 and C4 (see Figures 1.5a and 1.5d) are both vertex- and edge-transitive.

1.1.3 Special vertex sets

This subsection presents the notions of independence, domination and separation in
graphs.

Definition 1.18. Cliques, independent sets and dominating sets:

Let G = (V,E) be a graph. A clique is a set of vertices S ⊂ V such that
∀(u, v) ∈ S2, {u, v} ∈ E. An independent set is a subset of vertices S ⊂ V such
that ∀(u, v) ∈ S2, {u, v} /∈ E. A dominating set is a set of vertices S ⊂ V such that
∀u ∈ V \ S,∃v ∈ S, {u, v} ∈ E.

The size of the biggest clique in G, noted ω(G), is called the clique number of G.
The size of the biggest independent set in G, noted α(G), is called the independence
number of G. The size of the smallest dominating set in G, noted γ(G), is called
the domination number of G.

A few fundamental properties follow directly from the definitions:

26 Thomas Bellitto

1. Preliminaries

Proposition 1.19.

• The empty vertex set is a clique and an independent set in every graph. More
generally, any subset of a clique (resp. independent set) is a clique (resp.
independent set) as well. The set V (G) of vertices of a graph G is always a
dominating set. Any superset of a dominating set is dominating too.

• Given a graph G and a proper colouring c on G, the colour classes are inde-
pendent sets by definition. Hence, χ(G) × α(G) > V (G) since every vertex
belongs to a colour class.

• In a colouring of a graph, all the vertices of a clique must have different colour.
Hence, ω(G) 6 χ(G). This bound is not always tight.

• A clique in a graph is an independent set in its complement. Hence, ω(G) =
α(G).

Example 1.20.

v0

v1

v2

v3

v4 v5

v6

v7

v8

v9

Figure 1.11: A graph G.

The set {v2, v3, v4} is a clique in the graph G depicted in Figure 1.11. Since G is
3-colourable (see the figure for an example of 3-colouring), we know that ω(G) = 3.

The colour classes are independent set and notably {v0, v4, v6, v9} is an indepen-
dent set of size 4. The same argument applied to G indicates that since G can be
partitioned into 4 cliques (circled in grey), α(G) = 4 (an independent set has at
most one vertex of each clique).

One can check that the set {v0, v4, v8} is a minimum dominating set on G and
γ(G) = 3.

The cycle of 5 vertices C5 cannot be coloured with less than 3 colours but contains
no clique of size more than 2. This proves that the bound ω(G) 6 χ(G) is not tight.
Since C5 = C5, we also observe that C5 cannot be partitioned in less than 3 cliques
but its independence number is 2.

Finally, we present the notions of separating and identifying codes, which are
studied in Chapter 2.

Definition 1.21. Separating and identifying codes:
Let G = (V,E) be a graph and C be a set of vertices of G. The signature of a

vertex v ∈ V is the set sign(v) = N [x] ∩ C and C is said to be a separating code of
G if and only if all the vertices of V have pairwise distinct signatures. A set C that
is both separating and dominating is called an identifying code. In this case, the
signature of all the vertices are pairwise distinct and non-empty.

Walks, Transitions and Geometric Distances in Graphs. 27

1.1. Fundamentals of graph theory

Example 1.22.

x

v wu

y z

(a) The code C1.

x

v wu

y z

(b) The code C2.

Figure 1.12: Two examples of codes in the graph C6.

Consider the code C1 = {u, v, w} depicted in red in Figure 1.12a. The signature of
the vertices are respectively sign(u) = {u, v}, sign(v) = {u, v, w}, sign(w) = {v,w},
sign(x) = {u}, sign(y) = ∅ and sign(z) = {w}. Since they are pairwise distinct, C1
is a separating code but the vertex y is not dominated and C1 is not an identifying
code. The code C2 = {u,w, y} depicted in blue in Figure 1.12b is both separating
and dominating and is therefore an identifying code.

Note that every superset of a separating set is separating too. Since this also
holds for domination, it holds for identification. However, not every graph admits
a separating code (look at the graph P2 for example). Hence, a graph G admits a
separating and an identifying code if and only if V (G) is a separating code itself.

The conjunction of domination and separation is important in many practical
applications. In fault detection and security, domination generally ensures that we
know if a problem occurs and separation allows us to determine what the problem is.
For example, imagine we model a building with a graph where the vertices denote
the rooms and an edge between two vertices means that we can see a room from the
other. If the set of rooms we equip with smoke detectors forms a dominating set, we
are sure to know if a fire occurs. If it forms an identifying code, not only would we
be able to detect a fire, but the set of activated detectors would indicate the exact
room where the fire is starting. More concrete examples are presented in details in
[108].

1.1.4 Hypergraphs

This subsection presents a generalization of graphs called hypergraphs where edges
may connect more than two vertices.

Definition 1.23. Hypergraphs:

An hypergraph H is an ordered pair (V,E) where V is a non-empty finite vertex
set and E ⊂ P(V) is a set whose elements are subsets of V and are called hyperedges.
An hypergraph may simply be defined as a set {E1, . . . , En} of hyperedges.

Separating codes are generalized to hypergraphs as follows:

Definition 1.24. Separating and identifying codes in hypergraphs:

Let H = (V,E) be a hypergraph and let C ⊂ E be a subset of hyperedges.
The signature of a vertex v is the set of hyperedges it belongs to: sign(v) = {E ∈

28 Thomas Bellitto

1. Preliminaries

E : v ∈ E}. The hyperedge set C is a separating code if all the vertices of V
have pairwise distinct signatures and C is an identifying code if it is separating and
∀v ∈ V,∃E ∈ C, v ∈ E.

Example 1.25.

u v

w

x y

E1

E2

E3

E4

Figure 1.13: An hypergraph H = (V, {E1, E2, E3, E4}).

Let H be the hypergraph depicted in Figure 1.13. The hyperedge set {E1, E3,
E4} is an identifying code in the hypergraphH. Indeed, the signatures of the vertices
u, v, w, x and y are respectively {E1, E4}, {E3}, {E4}, {E1}, {E3, E4}.

Note that if C is a code of size 2, there are only four possible signatures including
the empty signature which is forbidden in an identifying code. Hence, a graph on
five vertices (resp. four) or more cannot have a separating (resp. identifying) code
of size 2. Thus, the code {E1, E3, E4} is a minimum separating and identifying code.

Equivalent formulations of this problem can also be found in the literature un-
der the name of test cover or discriminating code (see [90] and [14] for important
examples). The problem is generally defined by a set of individuals I and a set of
attributes A where the attributes have no value and are simply properties that each
individual may or may not have. Hence, the attributes can be defined by the set
of individuals that possess them. The objective is to find a set of attributes C as
small as possible such that each individual is characterized by the attributes of C it
possesses. This is the same as finding a minimum separating code in the hypergraph
whose vertex set is I and whose hyperedge set is A.

The problem of separating and identifying codes in graphs were introduced in
[69] and are a particular case of the same problems in hypergraphs. Indeed, solving
the problem in a graph G = (V,E) comes down to solving the problem in the
hypergraph H = (V,E) where E = {N [v] : v ∈ V } (where N [v] denotes the closed
neighbourhood of v in G). The problem on graphs is strictly less expressive since
it only models problems in hypergraphs (V,E) where |E | = |V |. Separating codes
have also been studied on directed irreflexive graphs in [101], [102] or [63]. The
expressiveness of this model lies between the problem in graphs and the problem in
hypergraphs.

This problem also appears in bipartite graphs in [22] and [23] for example. We are
given a bipartition (V1, V2) of the vertices of a graph and a separating code is defined
as a subset of V2 such that all the vertices of V1 have a different signature. This
formulation is equivalent to the problem on a hypergraph where the vertex of the
hypergraph are V1 and the hyperedges are the N [v] for v ∈ V2. The expressiveness
of different models of separation plays an important role in Chapter 2.

Walks, Transitions and Geometric Distances in Graphs. 29

1.2. Elements of complexity

In many practical applications, some attributes are more expensive to test than
others. Let a cost be associated to each attribute. Then, the weighted separation
problem is the problem of finding a separating code of minimum cost. We return to
these problems and present a method to solve them in Section 1.6.

1.2 Elements of complexity

For further information on the subject developed in this Section, we refer the reader
to [94].

1.2.1 P, NP and polynomial reductions

Complexity theory aims at classifying computational problems according to their
difficulty, which is measured by how much time is required to find a solution. This
definition therefore depends on the model of computation we use. We first present
two important complexity classes.

Definition 1.26. P, NP:

We denote by P the set of problems that can be solved on a deterministic Turing
machine in polynomial-time in the size of the input. The set NP denotes the class
of problems that can be solved in polynomial-time on a non-deterministic Turing
machine.

However, defining formally the different variants of Turing machines is out of the
scope of this thesis where we only consider algorithms on deterministic Turing ma-
chines. Alternatively, the class NP can be defined as the class of problems for which
an answer can be verified in polynomial time on a deterministic Turing machine.

We now present the notion of reduction which allows to compare the complexity
of two problems.

Definition 1.27. Polynomial reduction:

Given two problems P1 and P2, a polynomial reduction of P1 to P2 is a func-
tion that transforms an instance of P1 to an instance of P2 in polynomial time
such that a solution of P1 can be deduced in polynomial time from the solution
of P2. If there exists a polynomial reduction of P1 to P2, P1 is reducible (or
polynomially-reducible) to P2. If P2 is also reducible to P1, P1 and P2 are equiv-
alent (or polynomially-equivalent). If all the problems off a class C are polynomially
reducible to a problem P, P is C-hard , which intuitively means that solving P is
at least as hard as solving any problem in C. If P is also in C, P is C-complete.

This notion is important because of the following consequence:

Proposition 1.28. If P1 is reducible to P2 and P2 can be solved in polynomial
time, then P1 can be solved in polynomial time too.

Example 1.29.

Let k be an integer. Consider the two following problems:

30 Thomas Bellitto

1. Preliminaries

P1 : k-identifying code in graphs

Input: A graph G.
Output: Determines if there exists an identifying code in G of size k or less.

P2 : k-identifying code in hypergraphs

Input: An hypergraph H.
Output: Determines if there exists an identifying code in H of size k or less.

Both problems are in NP. Indeed, given a code C, one can compute and compare
the signatures of the vertices of G or H and check whether C is dominating in
polynomial time. Let now assume that we are given an instance G = (V,E) of
P1. We can build in polynomial time a hypergraph H whose vertex set is V and
whose hyperedges are the Ev = N [v] for v ∈ V . If there is no identifying code of
size k or less in H, we know that there is no identifying code of size k or less in
G either. If there exists an identifying code CH of size k in H, we know that the
code CG = {v : Ev ∈ CH} is an identifying code in G of size |CH | 6 k. Hence, P1

is polynomially-reducible to P2 and if we find a polynomial-time algorithm for P2,
we can deduce one for P1 easily.

The transformation of a graph into its line graph (see Definition 1.14) provides
a polynomial reduction of edge-colouring to colouring (illustrated in Example 1.15).

Computing the clique number of a graph is polynomially equivalent to computing
its independence number (see Definition 1.18) since one can compute the complement
of a graph in polynomial time (see Proposition 1.19).

1.2.2 3-SAT and NP-completeness

Because of its expressiveness and complexity, the problem of boolean satisfiability
is extremely important in complexity theory.

Definition 1.30. Basic definitions of boolean satisfiability:
A boolean expression is an expression built from variables that can be set either to

True or False and from the operators ∧ (the logical “and”, also called conjunction),
∨ (the logical “or”, also called disjunction) and ¬ (the logical “not”, also called
negation). A formula is said to be satisfiable if and only if there exists an assignment
of each variable to True or False such that the formula is True.

We define the problem of satisfiability, noted SAT as follows:

SAT

Input: A boolean expression.
Output: True if the formula is satisfiable and False if it is not.

Occurrences of a variable x or of its negation ¬x are called literals. A disjunction
of literals is called a clause. A formula is written in conjunctive normal form if it
is written as a conjunction of clauses. Every formula can be written in conjunctive
normal form. For a given integer k, a formula is written in k-conjunctive normal
form if it is written as a conjunction of clauses of size at most k. We define the
problem of k-satisfiability, noted k-SAT as follows:

Walks, Transitions and Geometric Distances in Graphs. 31

1.2. Elements of complexity

k-SAT

Input: A boolean expression given under k-conjunctive form.
Output: True if the formula is satisfiable and False if it is not.

Example 1.31. Let a, b, c and d be variables and let us consider the formula
F = a∨ (b∧¬c)∨¬b∧ (¬a∨ b∨ c∨¬d). It is satisfied by the assignment a = True,
b = True, c = False and d = True and is therefore satisfiable. It can be written in
conjunctive normal form as follows:

F = (a ∨ b ∨ ¬b)
︸ ︷︷ ︸

=True

∧(a∨¬c∨¬b)∧ (¬a∨ b∨ c∨¬d) = (a∨¬c∨¬b)∧ (¬a∨ b∨ c∨¬d).

Thus, F is satisfiable if and only if the formula (a∨¬c∨¬b)∧(¬a∨b∨e)∧(c∨¬d∨¬e)
is satisfiable. Indeed, by adding a new variable, we can replace a clause of size 2n by
two clauses of size n+1 and by iterating this process, we find that every formula can
be written under 3-conjunctive normal form. However, the polynomial equivalence
between SAT and 3-SAT is not trivial. Note that our method to write a formula F

under normal conjunctive form does not provide a formula whose size is polynomially
bounded by the size of F .

The problem of 3-SAT is useful in the seminal theorem of Cook and Levin.

Theorem 1.32. Cook-Levin (1971) [29] [80]

3-SAT is NP-complete.

In other words, every problem in NP is polynomially reducible to 3-SAT. Deter-
mining whether P=NP is unarguably one of the most important open problems in
modern mathematics. The reason why NP-completeness is so important is because
finding a polynomial-time algorithm for an NP-complete problem would answer the
conjecture and prove that every problem in NP can be solved in polynomial time.
Conversely, if P 6=NP, proving that a problem is NP-complete proves that there
exists no polynomial-time algorithm that can solve it. The Cook-Levin theorem
considerably simplifies the proofs of NP-completeness since we now only have to
reduce 3-SAT. This theorem was therefore the first of a long series of proof of NP-
completeness. See [68] for one of the most important examples.

Theorem 1.33.

The following problems are NP-hard:

• Determining the chromatic number of a graph G.

For a given integer k > 3, determining if a graph G is k-colourable (Karp,
1972 [68]).

• Determining the chromatic number of a directed graph G.

For a given integer k > 4, determining if a directed graph G is k-colourable
(Klostermeyer and MacGillivray, 2004 [74]).

32 Thomas Bellitto

1. Preliminaries

• Determining the edge-chromatic number of a graph G.

For a given integer k > 3, determining if a graph G is k-edge-colourable
(Holyer, 1981 [62]).

• Determining the clique number or the independence number of a graph G
(Karp, 1972 [68]).

• Determining the domination number of a graph G (Garey and Johnson, 1979
[53]).

• Determining the size of the smallest separating / identifying code in a hyper-
graph (Gary and Johnson in updated editions of [53], 1990).

• Determining the size of the smallest separating / identifying code in a graph
(Charon et al., 2003 [24]).

1.2.3 Approximations

When no efficient algorithm is known for a problem that we have to solve on big
instances, we often have to settle for heuristic algorithms that are faster but do not
always provide optimal or exact answers. If the answer provided by our algorithm
is within a constant multiplicative factor k of the optimal answer, our algorithm
is a k-approximation. If such an algorithm exists and run in polynomial-time, the
problem is said k-approximable (or k-polynomially-approximable).

For example, one can prove that finding maximal independent sets on a graph
G of maximum degree 4 is NP-complete and we know no algorithm to solve it
in polynomial time. However, it is proved in [59] that the greedy algorithm that
consists of picking a vertex of minimum degree, adding it to the independent set
and removing it and its neighbourhood from the graph until the graph is empty
always returns an independent set at least half as big as the maximal independent
set of the graph. Thus, finding a maximal independent set on a graph of maximum
degree 4 is 2-approximable.

However, unless P=NP, there are problems that are not k-approximable for any
k. One such problem is finding a maximal independent set in a general graph [8].
Hence, when faced with a problem we can prove NP-complete, a natural question is
to determine whether the problem can be approximated in polynomial time or not.

1.3 Walks, connectivity and transitions

1.3.1 Walks and connectivity in usual graphs

This subsection presents basic notions of graph theory that are especially interesting
in forbidden-transition graphs.

Paths, walks, distances. A walk W in an undirected graph or multigraph be-
tween a vertex v0 and a vertex vk is an alternating sequence of vertices and edges

Walks, Transitions and Geometric Distances in Graphs. 33

1.3. Walks, connectivity and transitions

(v0, e1, v1, e2, v2, . . . , ek, vk) where ei = {vi−1, vi}. The vertices v0 and vk are the
extremities of W . The integer k is called the length of the walk W .

A walk in a directed graph from a vertex v0 to a vertex vk is defined similarly as
an alternating sequence of vertices and arcs W = (v0, a1, v1, a2, v2, . . . , ak, vk) where
ai = (vi−1, vi). Here, v0 is the starting point of W and vk is its destination. The
length is defined similarly.

Note that a walk in a directed graph is entirely determined by the sequence of
arcs it uses and that a walk in a simple graph (directed or not) is entirely determined
by its sequence of vertices. Hence, in the appropriate structures, we can define a
walk simply as a sequence of vertices or as a sequence of arcs.

A path or elementary path is a walk that does not use twice the same vertex or
edge (except the extremities which may be the same). A walk whose extremities
are the same is called a cycle (walk) and an elementary cycle is both a cycle and an
elementary path.

The distance dist(u, v) between a vertex u and a vertex v is the length of a
shortest walk from u to v. If there is no walk between u and v, then dist(u, v) = +∞.

The next proposition states an important property of elementary walk.

Proposition 1.34. We can extract from every walk W on a graph G (directed or
not) a path P that only uses vertices and edges that W uses and has the same starting
point and destination.

Proof. If a walk W uses twice a vertex v, we remove all the edges and vertices
between the first and last occurrence of v in W . This process can be iterated until
the walk is elementary.

The next proposition follows directly from this proof.

Corollary 1.35. The shortest walk between two vertices is always a path.

Since the concatenation of a walk from u to v and a walk from v to w is a walk
from u to w whose length is thus necessarily greater or equal than dist(u,w), the
distance in graphs satisfies the following property:

Proposition 1.36. Triangle inequality:

For all vertices u, v and w, dist(u, v) + dist(v,w) > dist(u,w).

Example 1.37.

u

x w

v y

Figure 1.14: An example of graph G.

Consider the graphG depicted in Figure 1.14. The walkW = (u, uv, v, vw,w,wx,
x, xv, v, vy, y), that we can simply denote by the vertex sequence (u, v, w, x, v, y) is a

34 Thomas Bellitto

1. Preliminaries

walk of length 5 between u and y. The walk W is not elementary since it uses twice
the vertex v. We can however extract from W the path P = (u, v, y) by removing
everything between the first and last occurrence of the vertex v in W . Since P is
the shortest path between u and y, dist(u, y) = 2.

There does not always exist a walk between two vertices but determining whether
there exists a walk and therefore a path between two vertices in a graph G = (V,E)
can be done in time O(|V |+ |E|). This leads us to the notion of connectivity.

Definition 1.38. Connectivity, connected components:
Let G = (V,E) be an undirected graph. Two vertices u and v are connected

if and only if there exists a walk between u and v. A G is connected if every pair
of vertices of G is connected. The connected components of G are the maximal
vertex subsets of G that induce a connected graph. Since the connectivity between
two vertices induces an equivalence relation, the connected components of G are its
equivalence classes and are therefore pairwise disjoint.

Let G = (V,A) be a directed graph. Two vertices u and v are strongly connected
if and only if there exists a walk from u to v and a walk from v to u. Similarly, a
graph G is strongly connected if every pair of vertices is strongly connected and the
strongly connected components of G are the maximal vertex sets of G that induce
a strongly connected graph. Since strong connectivity also induces an equivalence
relation, the components are pairwise disjoint.

Example 1.39.

u

x w

v y

Figure 1.15: An example of graph G.

Let G be the directed graph depicted in Figure 1.15. While there is a walk
leading from u to every vertex of the graph, there is no walk leading to u from any
other vertex. Hence, the graph is not strongly connected and {u} is a strongly-
connected component of the graph. The two other strongly connected components
of the graph are {x} and {v,w, y}.

Connectivity and cycles allow us to introduce the important notion of tree.

Definition 1.40. Trees and spanning trees:
An undirected graph G is said acyclic if and only if there is no elementary cycle

of non-zero length in G. A tree is a graph that is both connected and acyclic.
Alternatively, a tree is a graph such that there exists exactly one walk between
every pair of vertices. A tree of n vertices always has n−1 edges. A vertex of degree
one in a tree is called a leaf .

A spanning tree T of a graph G is an acyclic and connected subgraph of G such
that V (T) = V (G). The set E(T) is a minimum set of edges of G that keeps the
graph connected. Every connected graph G admits a spanning tree.

Walks, Transitions and Geometric Distances in Graphs. 35

1.3. Walks, connectivity and transitions

Example 1.41.

w

v

u

z

y

x

Figure 1.16: An illustration of a spanning tree on a graph.

The graph G = (V,E) depicted in Figure 1.16 is not acyclic. For example,
the walk (u, uv, v, vw,w,wu, u) is a cycle. The tree T = (V, {uv, uw, ux, vy,wz})
depicted in red is acyclic and connected and is therefore a spanning tree on G. The
vertices x, y and z are leaves in T .

1.3.2 Forbidden-transition graphs

Walks in graphs are the model of choice to solve routing problems in all sorts of
networks. So far, we have defined walks in undirected graphs and in directed graphs.
However, in many practical applications, the set of possible routes an object can take
is much more complicated than the set of possible walks in a graph. For example, it
is completely possible in a road network that a driver coming from a given road may
not turn left while the road on his left can be used by drivers coming from different
roads. To model this kind of situations, we need to take into account not only the
edges of the graphs but also the transitions.

Definition 1.42. Transitions and forbidden-transition graphs:
A transition in an undirected graph is an unordered pair of adjacent distinct

edges. If a walk uses two edges uv and vw consecutively (with u 6= w), it uses the
transition {uv, vw}. We can simply write uvw to denote the transition {uv, vw}. A
forbidden-transition graph (or FTG) is a graph where certain pair of edges, although
adjacent, cannot be taken consecutively. More formally, we denote by T (G) and
F (G) respectively the set of permitted and forbidden transitions (F (G) and T (G)
are complementary) of a FTG. Depending on the applications, we define a FTG
either as a triplet (V,E, T) or (V,E, F). A walk W = (v0, e0, v1, . . . , ek, vk) in a
FTG (V,E, T) is compatible (or T -compatible) if and only if it only uses transitions
of T i.e. for all i 6 k − 2, we have vivi+1vi+2 ∈ T or vi = vi+2 (i.e. vivi+1 and
vi+1vi+2 are the same edge). Observe that a walk of length one uses no transition
and is therefore always T -compatible.

A transition in a directed graph is an ordered pair of adjacent arcs ((u, v), (v,w)).
The definitions of directed forbidden-transition graphs and T -compatibility are sim-
ilar as above.

An undirected FTG is connected if there exists a walk between u and v for every
pair of vertices u, v and that a directed FTG is strongly-connected if there exists a
walk from u to v for every ordered pair of vertices (u, v).

In the parts of this thesis where we deal with forbidden-transition graphs, we may
call the graphs with no forbidden-transitions usual graphs to avoid any ambiguity.

36 Thomas Bellitto

1. Preliminaries

While the notions of distance and connected components seem easy to generalize
to FTGs, their properties are drastically different. For example, the fundamental
Propositions 1.34 and 1.36 do not hold anymore in FTGs.

Example 1.43.

u

x w

v y

Figure 1.17: An example of undirected FTG. The red crossed line denotes a forbid-
den transition between the edges uv and vy.

In the FTG depicted in Figure 1.17, the walk W = (u, v, w, x, v, y) is a T -
compatible walk leading from u to y. We saw in Example 1.37 that we can extract
from W the path P = (u, v, y) which has same starting point and destination as
W and only uses vertices and edges that W uses. However, P uses the transition
uvy that W does not use and we notice that P is not T -compatible. While there
is a T -compatible walk from u to y, there is no T -compatible path. Also note that
the shortest compatible walk from u to y has length 4 (the walk (u, v, w, v, y) for
example) while there are walks of length 1 from u to v and from v to y.

Since there is a walk between every pair of vertices, this graph is connected.

Example 1.44.

u

x w

v y

Figure 1.18: An example of directed FTG. The transition from the arc wv to vy is
forbidden.

Consider the FTG depicted in Figure 1.18. Because of the forbidden transition, it
is now impossible to go from w to y even though w and v are still strongly connected
and so are v and y. The strong connectivity is no longer transitive and therefore no
longer an equivalence relation. Hence, the maximal vertex sets that induce strongly
connected components may now overlap. In this graph, they are {u}, {x}, {v,w}
and {w, y}.

Determining whether there exists a walk between two vertices u and v can still
easily be done in polynomial time but the existence of a walk does not imply the
existence of a path.

Walks, Transitions and Geometric Distances in Graphs. 37

1.4. Polytopes and lattices

Theorem 1.45. Szeider (2003) [106]
Determining whether there exists a path between two vertices u and v of a

forbidden-transition graph is NP-complete.

Graphs with forbidden transitions were introduced in 1968 by Kotzig [75] and
have since been used in a wide range of applications. As illustrated by Theorem 1.45,
many problems are harder in graphs with forbidden transitions. Finding elementary
path between two vertices is a well-studied problem in the general case [66] and also
on some subclasses of graphs such as grids [67]. Problems of graph-decomposition on
FTGs have also received a lot of attention, see [39] and [50] for important examples.

Compatible walks in FTGs also generalize other well-studied models such as
properly coloured paths. Given a graph with coloured edges (the colouring of the
edges does not have to be proper), properly coloured paths are paths that do not
use two edges of the same colour consecutively. This comes down to forbidding the
transitions between edges of the same colour. This model was introduced by Daykin
in 1976 [25] and has applications in various areas where the model of edge-colouring
is relevant and in bio-informatics [37]. We refer the reader to [56] for a survey on
this subject.

The model of forbidden-transition graph as well as a more general model where
we can forbid any given set of subpaths (a transition is a path of length 2) are also
used in optical telecommunication networks. Here, in order to travel through the
fibers of a network, a ray of light needs specific properties that depend on the fiber.
While every fiber can be used by certain rays, there are subpaths that no ray can
follow. See [79] for more details on the optical constraints and [1] for an example of
study of paths avoiding forbidden subpaths.

1.4 Polytopes and lattices

1.4.1 Norms and distances

The vector space used in this thesis is the space Rn. All definitions are given in this
specific case.

Definition 1.46. Norms, distances:
A norm is a function || · || : Rn → R+ such that:

• ∀x ∈ Rn, ||x|| = 0 if and only if x = 0;
• ∀x ∈ Rn and for all a ∈ R, ||ax|| = |a|||x||;
• ∀(x, y) ∈ (Rn)2, ||x+ y|| 6 ||x||+ ||y||.

A distance is a function d : Rn × Rn → R+ such that:
• ∀(x, y) ∈ (Rn)2, dist(x, y) = 0 if and only if x = y;
• ∀(x, y) ∈ (Rn)2, dist(x, y) = dist(y, x);
• ∀(x, y, z) ∈ (Rn)3, dist(x, y) + dist(y, z) 6 dist(x, z).

Given a norm || · ||, the distance induced by the norm is the function d : (x, y) 7→
||x− y||.

Given a distance, we denote by B(x, r) the ball of center x and of radius r defined
as {y ∈ Rn : dist(x, y) 6 r} . The unit ball (or sometimes unit polytope when it

38 Thomas Bellitto

1. Preliminaries

happens to be a polytope) is the ball of center 0 and of radius 1.

Example 1.47. Here are three important examples of norms:

• the Euclidean norm, noted ||·||2, is defined by ||(x1, . . . , xn)||2 =
√

x21 + · · ·+ x2n;

• the norm || · ||1 is defined by ||(x1, . . . , xn)||1 = |x1|+ · · ·+ |xn|;

• the norm || · ||∞ is defined by ||(x1, . . . , xn)||∞ = max(x1, . . . , xn).

The unit balls associated to these norms are illustrated in Figure 1.19.

0 1

1

0 1

1

0 1

1

Figure 1.19: The unit balls associated respectively to the norms || · ||2, || · ||1 and || · ||∞.

Among the possible unit balls, polytopes are especially important in this thesis.

Definition 1.48. Polyhedra, polytopes:
A n-dimensional polyhedron is a set of points defined as an intersection of half-

spaces (i.e. solutions of equations of the form a1x1+a2x2+ · · ·+anxn 6 b for given
ai and b ∈ R). A polytope is a bounded polyhedron.

We say that a polytope is regular if and only if all its edges have same length.

We would like to point out that several definitions of regularity can be found in
the literature and that some of them are stronger than ours and require the regular
polytopes to to be edge- and face-transitive. On the other hand, some definitions of
regularity only requires the edges of the same orbit to have same length, which is
weaker than our definition.

Note that the unit ball defined by any distance induced by a norm is convex,
symmetric, centered at 0 and has a non-empty interior. The converse holds and
allows to define polytope norms.

Definition 1.49. Polytope norms:
Let P be a convex, symmetric polytope centered at 0 and whose interior is non-

empty. The polytope norm associated to P, noted || · ||P , is the norm defined by the
formula

||x||P = inf{λ ∈ R+ : x ∈ λP}
The distance induced by || · ||P is the polytope distance associated to P: its unit

ball is equal to P.

Example 1.50.
Suppose we want to determine the distance between the points A and B on Figure

1.20 with the distance associated to the regular hexagon P (depicted in blue). From−−→
AB =

−−→
OC = 2

−→
OI and dist(O, I) = 1 (as I is on the border of the polytope), we find

dist(A,B) = 2.

Walks, Transitions and Geometric Distances in Graphs. 39

1.4. Polytopes and lattices

P

0

C

A

B

I

Figure 1.20: A polytope norm.

1.4.2 Lattices

Lattices are helpful in our study of polytopes. For further information, the reader
may refer to [55].

Definition 1.51. Lattices:
A lattice of a n-dimensional vector space E is a subset Λ ⊂ E such that there

exists a basis B = (e1, . . . , en) of E for which Λ is the set of points with integer
coordinates: Λ = e1Z⊕ · · · ⊕ enZ. In this case, B is a basis of Λ.

The Voronöı cell (or Voronöı region) of a lattice Λ, denoted by VΛ, is the set of
points of the space that are closer to 0 than to any other point of the lattice:

VΛ = {x ∈ Rn : ∀y ∈ Λ, ||y − x|| > ||x||}.

A coset is the translate of a lattice by a vector of E. Let Λ be a lattice of E
and let Λ′ be a sublattice of Λ (i.e. a lattice included in Λ). By translating Λ′ by
vectors of Λ \ Λ′, we can create a partition of Λ into cosets. A coset of Λ is simply
a coset included in Λ and is thus the translate of a sublattice of Λ.

Example 1.52.
The following lattices are of particular interest in Chapter 4.
• The set Zn is the cubic lattice and a basis is B = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . ,

(0, 0, . . . , 1)}. Its Voronöı cell is the hypercube whose vertices are the points of the
form

(
±1

2 ,±1
2 , . . . ,±1

2

)
. It is illustrated in Figure 1.21a. The set (2Z)2 is a sublattice

of Z2 and the cosets (2Z)2, (2Z+1)2, 2Z× (2Z+1) and (2Z+1)× 2Z partition Z2.

• The lattice An is defined by An =

{

(x1, x2, . . . , xn+1) ∈ Zn :

n∑

i=0

xi = 0

}

.

Note that it is a n-dimensional lattice since all its vertices belong to the hyper-
plane of Rn+1 defined by x1 + x2 + · · · + xn+1 = 0. A basis of An in Rn+1 is
B = {(1,−1, 0, . . . , 0), (1, 0,−1, . . . , 0), . . . , (1, 0, 0, . . . ,−1)}. The Voronöı cell of A2

is illustrated in Figure 1.21b and the Voronöı cells in higher dimension are more
extensively studied in Subsection 4.4.1.

• The lattice Dn consists of the points whose coordinates are integers of even sum:

Dn =

{

(x1, . . . , xn) ∈ Zn :

n∑

i=0

xi ≡ 0 mod 2

}

. A basis of Dn is {(1, 1, 0, . . . , 0),

(1,−1, 0, . . . , 0), (1, 0,−1, . . . , 0), . . . , (1, 0, 0, . . . ,−1)}. The Voronöı cell of D2 is il-
lustrated in Figure 1.21c and higher dimensions are studied in further details in
Subsection 4.4.2.

40 Thomas Bellitto

1. Preliminaries

(1,0)

(0,1)

(a) The lattice Z2.

(-1,0,1) (1,0,-1)

(0,-1,1)

(-1,1,0)

(1,-1,0)

(0,1,-1)

(b) The lattice A2.

(2,0)

(1,1)

(0,2)

(c) The lattice D2.

Figure 1.21: Some lattices (points depicted in red) and their Voronöı cells (depicted
in blue).

1.4.3 Polytopes

We say that a set S ∈ Rn is discrete if and only if every ball of finite radius in Rn

only contains a finite number of elements of S.

Definition 1.53. Tilings and parallelohedra:

A polytope P tiles Rn by translation if there exists a discrete set of vectors S

such that
⋃

s∈S

(P +s) = Rn and ∀s, s′ ∈ S2, P +s and P +s′ have disjoint interiors. If

in addition to the previous conditions, the intersection of P + s and P + s′ for s and
s′ in S is always either empty or a common face of both of them, S is a face-to-face
tiling of Rn by translation.

A n-dimensional parallelohedron is a convex polytope P that tiles Rn face-to-face
by translation.

Note that a polytope of empty interior cannot tile the space because the set S
that it would require is not discrete.

Several alternative definitions of parallelohedra exist in the literature. In this
thesis, parallelohedra are by definition convex, which is not always the case. Fur-
thermore, some authors only use the term “parallelohedra” in dimension 3 and talk
about parallelotopes in general dimension and similarly use the terms polygons,
polyhedra and polytopes in dimension 2, 3 and in the general case. However, some
other authors use the term “parallelotopes” for a n-dimensional generalization of
parallelepipeds. To avoid any confusion, we avoid the term “parallelotope” and use
“parallelohedra” in the general case.

The only tilings we are interested in in this thesis are the tilings by translation.
More general tilings where rotations are allowed have been widely studied too. Those
tilings make the list of polytopes that tile Rn much larger. The polygons that tile
the plane notably include all the triangles and quadrilaterals. The classification of
polygons that tile the plane has recently been completed by Rao in [99] but is not
our subject here.

Walks, Transitions and Geometric Distances in Graphs. 41

1.4. Polytopes and lattices

Example 1.54.

P1

(a) A tiling of R2 by a polygon P1.

P2

(b) A tiling by translation
of R2 by a polygon P2.

P2

(c) A face-to-face tiling by
translation of R2 by P2.

Figure 1.22

The polygon P1 depicted in Figure 1.22a tiles the plane but it requires rotation
(the red polygons are not translated of the blue ones) and P1 is not a parallelohedron.
The tiling depicted in Figure 1.22b is not a face-to-face tiling but P2 also tiles the
plane face-to-face as depicted in Figure 1.22c and is therefore a parallelohedron.

We only study convex polytopes in this thesis because only them define a norm.
Tilings by translation are especially important to us because if we apply a rotation
to a unit polytope, it loses the property that it only contains vertices at distance
smaller than one to a center. The classification of the convex polytopes that tile Rn

and especially R2 and R3 by translation is fundamental for Chapters 4 and 5: the
rest of this section is devoted to the main results addressing this classification.

Theorem 1.55. Venkov (1954) [109]
The convex polytopes that tile Rn by translation are exactly the parallelohedra,

i.e. the convex polytopes that tile Rn by translation face-to-face.

The vector set S of a face-to-face tiling of Rn by a parallelohedron (see Definition
1.53) is a lattice. For further details on the characterization of parallelohedra, we
refer the reader to the works of Minkowski [89] and McMullen [86].

Note that the Voronöı cell of any lattice Λ ∈ Rn tiles Rn face to face when
translated by Λ. Voronöı’s conjecture states that the converse also holds:

Conjecture 1.56. Voronöı (1908) [110]
If P is a parallelohedron in Rn, then there is an affine map ϕ : Rn → Rn such

that ϕ(P) is the Voronöı region of a lattice Λ ⊂ Rn.

This conjecture has already been proved for several families of parallelohedra
such as primitive parallelohedra (Voronöı, 1908 [110]) or zonotopal parallelohedra
(Erdahl, 1999 [40]). Delaunay solved it for low dimensions:

Theorem 1.57. Delaunay (1929) [35]
Voronöı’s conjecture holds in dimension up to 4.

42 Thomas Bellitto

1. Preliminaries

Hence, classifying the parallelohedra in dimension 2 and 3 comes down to clas-
sifying the Voronöı’s cells of 2- or 3-dimensional lattices.

1.4.4 Classification of the parallelohedra in dimension 2 and 3

For more details on the classification we present in this subsection, we refer the
reader to [27].

The only two possible Voronöı cells in dimension 2 are rectangles and a specific
kind of hexagon called Voronöı hexagon (see Figure 1.23). The parallelohedra also
contain the parallelograms since every parallelogram can be written as the image of
a rectangle by an affine map.

Proposition 1.58. There are two kinds of parallelohedra in dimension 2:

• parallelograms;

• Voronöı hexagons, which are hexagons whose opposite sides are parallels.

The assumption that the vertices of our polytopes do not coincide is rarely useful
in our proofs. Hence, we can see parallelograms as a specific degenerated case of
Voronöı hexagons that have a pair of opposite sides of zero length. Voronöı hexagons
can thus be seen as the most general 2-dimensional parallelohedra.

(a) Rectangular Voronöı cells. (b) Hexagonal Voronöı cells.

Figure 1.23: The two kinds of Voronöı cells in the plane.

The classification of parallelohedra in dimension 3 is slightly more complicated.
The most general parallelohedron in dimension 3 is called the truncated octahedron
(see Figure 1.24e). In the most regular case, it contains 36 edges of same length
than can be grouped into six sets of six parallel edges. However, in the general
case, we only need the edges within the same group to have the same length for the
polytope to tile R3. Just like in the plane, one of those groups can consist of edges
of length zero. In this case, we obtain an elongated dodecahedron (see Figure 1.24d).
The elongated dodecahedron contains 28 edges that can be grouped in 4 groups of
6 and a group of 4 edges (the edges that separate the hexagonal faces) that must be
parallel and have same length. If we shrink one of the groups of 6 edges, we obtain
an hexagonal prism (see Figure 1.24c). If we shrink the edges of the group of size 4,

Walks, Transitions and Geometric Distances in Graphs. 43

1.4. Polytopes and lattices

we obtain a rhombic dodecahedron (see Figure 1.24b). If we shrink both, we end up
with a cuboid (see Figure 1.24a, it is the the Voronöı cell of Z3). The classification
ends here as shrinking any other group of edges would lead to a polytope of empty
interior.

Proposition 1.59. There are five kinds of parallelohedra in dimension 3:

• cuboids;

• rhombic dodecahedra;

• hexagonal prisms;

• elongated dodecahedra;

• truncated octahedra.

(a) A cube. (b) A rhombic dodecahe-
dron.

(c) An hexagonal prism.

(d) An elongated dodecahedron. (e) A truncated octahedron.

Figure 1.24: The 5 kinds of 3-dimensional parallelohedra in their most regular form
possible, where all the edges have same length.

The Voronöı cells of A3 and D3 are rhombic dodecahedra and of course, the
Voronöı cell of Z3 is a cube. Also note that the faces of 3-dimensional parallelohedra
are always 2-dimensional parallelohedra.

The truncated octahedron and especially the case where all the edges have same
length is at the core of Chapter 5. It is a specific case of permutohedron, which
provides an interesting coordinate system to study it.

Definition 1.60. Permutohedron:
A n-dimensional permutohedron or permutohedron of order n + 1 is the convex

hull of the set of points of Rn+1 whose coordinates are a permutation of {1, 2, . . . , n+

44 Thomas Bellitto

1. Preliminaries

1}. It is thus contained in the hyperplane of Rn+1 defined by

n+1∑

i=1

xi =
(n+ 1)(n + 2)

2

and is therefore a n-dimensional polytope. Two vertices are adjacent if and only if
the coordinate of one can be obtained from the coordinate of the other by transposing
two consecutive integers. Figure 1.25 illustrates the 2-dimensional permutohedron.

(1,2,3) (3,2,1)

(2,1,3)

(1,3,2)

(3,1,2)

(2,3,1)

Figure 1.25: The permutohedron of order 3 is a regular hexagon.

A truncated octahedron whose edges all have same length is a permutohedron
of order 4. We now describe it using the permutohedron coordinates.

A regular octahedron consists of 6 vertices of degree 4 and has 12 edges and 8
triangular faces. Since the vertices have degree 4, the truncation replaces them by
a square. The truncated octahedron therefore has 6× 4 = 24 vertices, 8 hexagonal
faces and 12 edges between hexagonal faces (the faces and edges of the octahedron),
6 square faces and 6× 4 = 24 edges that come from the truncation and belong to a
square and an hexagonal face. This amounts to 36 edges and 14 faces.

If we see the truncated octahedron as a permutohedron in the hyperplane of
R4 defined by x1 + x2 + x3 + x4 = 10, the coordinates of the 24 vertices are the
permutation of {1, 2, 3, 4}. A vertex v has three neighbours whose coordinates can
be obtained from the coordinates of v by transposing respectively 1 and 2, 2 and 3
and 3 and 4 (hence a total of 36 edges). By fixing one of the coordinate to 1 or 4,
we define 8 planes that each contains a translation of a permutohedron of order 3
(which is a regular hexagon). Each vertex belongs to two of those 8 faces depending
on which of their coordinates are equal to 1 and 4. From a given vertex, we can
transpose 1 and 2 or 3 and 4 independently in any order, which defines a square.
Each square is defined by which two of the four coordinates of its vertices are equal
to 1 and 2, which amounts to 6 square faces and each vertex belongs to exactly
one. Hence, the 12 edges that denote the transposition of 2 and 3 belong to two
hexagonal faces and the 24 other edges belong to both a square and an hexagon.
Figure 1.26 illustrates the neighbourhood of a vertex of the truncated octahedron.

Note that every permutohedron is vertex-transitive but a permutohedron of order
n > 4 is not edge-transitive.

1.5 Rational languages and automata

This section only presents the few notions that we use in this thesis and does not
intend to give a detailed overview of language theory. For further information on
this subject, we refer the reader to [64].

Walks, Transitions and Geometric Distances in Graphs. 45

1.5. Rational languages and automata

(1,3,4,2)

(1,4,3,2) (2,3,4,1)

(2,4,3,1)

(1,4,2,3) (3,2,4,1)

(2,4,1,3) (4,2,3,1)

(3,4,2,1)

(3,4,1,2) (4,3,2,1)

x2 = 4 x4 = 1

x1 + x4 = 3

Figure 1.26: A representation of the vertex of coordinates (2,4,3,1) depicted in red
and all the faces it belongs to. The equation of the faces are written in blue.

1.5.1 Rational languages

Definition 1.61. Alphabets, words, languages:

An alphabet is a non-empty finite set. The elements of an alphabet are called
letters. A word of length k on the alphabet A is a sequence of k letters of A. The
word of length 0, called the empty word , is denoted by ε. A language is a set of
words on a given alphabet (unlike alphabets, language do not have to be finite).

Definition 1.62. Prefixes, suffixes, factors, subwords:

If a word u can be written as the concatenation vwx of three (possibly empty)
words v, w and x, then v, w and x are respectively a prefix , a factor and a suffix
of u. A word w = w0w1 . . . wn is a subword of a word v if and only if there exist
v0, v1, . . . , vn+1 ∈ A∗ such that u = v0w0v1w1 . . . vnwnvn+1.

Example 1.63.

The words ε and exa are prefixes of the word example. The word xampl is a
factor of example. The word xale is a subword of example. All prefixes and suffixes
of a word are factors and all factors are subwords.

A word of length n has n + 1 distinct prefixes, n + 1 distinct suffixes, at most
n(n+1)

2 + 1 distinct factors and at most 2n distinct subwords.

The languages used in this thesis all belong to a specific subclass called rational
languages that we introduce here.

Definition 1.64. Rational languages:

Rational languages on an alphabet A are defined inductively as follows:

• ∅ is rational;

• ∀a ∈ A, the language {a} often simply denoted by a is rational;

• for all rational languages L1 and L2, their union denoted by L1+L2 is rational;

46 Thomas Bellitto

1. Preliminaries

• for all rational languages L1 and L2, their concatenation L1L2 is rational. The
concatenation of L1 and L2 is the set of words than can be written uv with
u ∈ L1 and v ∈ L2.

• For all rational languages L, L∗ =
∑

k∈N∗

Lk is rational. The operator ∗ is

called Kleene star or Kleene closure since it is the closure of L by the above
operations.

We denote by Rat(A) the set of rational languages on an alphabet A. An ex-
pression that describes a language as a combination of letters or words by the above
operations is called a regular expression.

Example 1.65.
The set of all words on an alphabet A is A∗ and the set of all words of length k

is Ak. These are regular expressions and those languages are therefore rational. A
language that contains a single word is always regular too since it is the concatenation
of languages of one letter.

The language of the words of even length on an alphabet A can be written
L1 = (A2)∗ and is rational.

The language of the words on the alphabet {a, b, c} that contain the letter a at
most twice is rational too and can be written L2 = (b+c)∗(a+ε)(b+c)∗(a+ε)(b+c)∗ .

The language of the words on the alphabet {a, b} that contain exactly one oc-
currence of one of their letter is L3 = a∗ba∗ + b∗ab∗ and is rational.

However, the language of words on {a, b} that contains exactly as many occur-

rences of each letter or even the language
∑

n∈N

anbn are not rational (the only possible

infinite sums in a regular expression are the Kleene stars).

1.5.2 Automata and recognition

This subsection presents the notion of automata, which creates interesting bridges
between language and graph theories.

Definition 1.66. Automata:
An automaton is a 5-tuple (A,Q, T, I, F) where:

• A is the alphabet the automaton is defined on.

• Q is the set of states of the automaton.

• T ⊂ Q × A × Q is the set of transitions of the automaton. A transition t
of an automaton is a triplet (q1, a, q2) where q1 is called the origin of t, a
is called its label and q2 its target. Transitions in automata can be seen as
labelled arcs between states and should not be confused with transitions in
graphs (Definition 1.42).

• I ⊂ Q is the set of initial states of the automaton.

• F ⊂ Q is the set of final states of the automaton.

Walks, Transitions and Geometric Distances in Graphs. 47

1.5. Rational languages and automata

The transition function of an automaton determines in which states the automa-
ton ends up if it is in a given set of states S ∈ P(Q) and reads a given word u ∈ A∗.
Intuitively, the automaton is at each step of the run in a subset of its states. Reading
the empty word does not change the states the automaton is in. After reading a
letter a, the automaton is in all the states that are the targets of a transition labelled
by a whose origin is a state the automaton was in before reading a. We iterate this
process for each letter of the word that the automaton reads. The automaton starts
in the initial states I and the question is whether the states of the automaton after
reading a given input word contains one of the final states f ∈ F .

Definition 1.67. Recognizable languages:
Let (A,Q, T, I, F) be an automaton. Its transition function δ : P(Q)A∗ 7→ P(Q)

is defined inductively as follows:

• ∀S ∈ P(Q), δ(S, ε) = S

• ∀S ∈ P(Q),∀a ∈ A, δ(S, a) = {q ∈ Q|∃s ∈ S,∃t ∈ T, t = (s, a, q)}

• ∀S ∈ P(Q),∀u ∈ A∗ \ {ε}, δ(S, u) = δ(δ(S, a), u′) where u = au′ with a ∈
A, u′ ∈ A∗

A word u is accepted by an automaton (A,Q, T, I, F) if and only if δ(I, u)∩F 6=
∅. The language recognized by an automaton is the set of words that this automaton
accepts. A language is recognizable if and only if there exists an automaton that
recognizes exactly this language. The set of recognizable languages on an alphabet
A is noted Rec(A).

An automaton (A,Q, T, I, F) can be depicted by a directed multigraph whose
vertex set is Q and that contains an arc (u, v) labelled by a for each transition
(u, a, v). Two transitions (u, a, v) and (u, b, v) with same origin and target may be
depicted by a single arc (u, v) labelled by both a and b. We depict initial states by
incoming blue arrows and final states are circled in red.

Example 1.68.
The automata depicted in Figure 1.27 recognize the languages L1 = (A2)∗, L2 =

(b+ c)∗(a+ ε)(b + c)∗(a+ ε)(b + c)∗ and L3 = a∗ba∗ + b∗ab∗ described in Example
1.65.

If the automaton depicted in Figure 1.27b reads the word bacb, its states are
successively {q0} (before reading anything), {q0} (after reading b), {q1} (after read-
ing ba), {q1} (after reading bac) and {q1} (after reading bacb). The automaton ends
in the state q1 which is final and thus, bacb ∈ L2. If the same automaton reads the
word abaac, its successive states before reading the word and after each letter are
respectively {q0}, {q1}, {q1}, {q2}, ∅ and ∅. The set of states the automaton ends
in does not contain a final state. Hence, abaac /∈ L2.

If the automaton depicted in Figure 1.27c reads the word aba, its successive
states are {q0, q2}, {q0, q3}, {q1, q3} and {q1}. Since q1 is a final state, aba ∈ L3.

We are now ready to introduce a fundamental characterization of recognizable
languages:

48 Thomas Bellitto

1. Preliminaries

q0 q1
A

A
(a) An automaton that recognizes L1.

q0 q1 q2

b, c b, c b, c

a a

(b) An automaton that recognizes L2.

q0 q1

a a

b

q2 q3

b b

a

(c) An automaton that recognizes L3.

Figure 1.27

Theorem 1.69. Kleene (1956) [73]
For all alphabets A, Rat(A) = Rec(A).

In other words, a language L is rational if and only if there exists an automaton
that recognizes exactly the words of L. The main consequence is that every recog-
nizable language can be described by a regular expression. The rest of this section
presents how one can deduce a regular expression of a language from an automaton
that recognizes it.

Lemma 1.70. Arden (1961) [2]
Let K and L be two languages such that ε /∈ K. The only solution of the equation

X = KX + L is X = K∗L.

Suppose we want to find a regular expression of the language L recognized by
the automaton (A,Q, T, I, F). For each state q ∈ Q, we denote by Lq the language
recognized by the automaton (A,Q, T, {q}, F). We end up with the following system:







Lq =







∑

(q,a,r)∈T

aLr + ε if q ∈ F

∑

(q,a,r)∈T

aLr else

L =
∑

q∈I

Lq

This system can be solved by Gaussian elimination with Arden’s lemma. At
each step of the resolution, the languages are denoted by regular expressions.

Example 1.71.
Let us determine a regular expression of the language L recognized by the au-

tomaton depicted in Figure 1.28

Walks, Transitions and Geometric Distances in Graphs. 49

1.6. Linear programming

q0

q1 q2

ba

a

b

c

Figure 1.28: An example of automaton.

Our system is







L0 = bL1 + cL2

L1 = aL0 + bL2 + ε

L2 = aL1

L = L0

, by elimination of L2 this leads to







L0 = (b+ ca)L1

L1 = aL0 + baL1 + ε = (ba)∗(aL0 + ε)

L = L0

and by elimination of L1 we find:

L = L0 = (b+ ca)(ba)∗aL0 + (b+ ca)(ba)∗ = ((b+ ca)(ba)∗a)∗(b+ ca)(ba)∗.

1.6 Linear programming

For further information on the subject developed in this section, we refer the reader
to [12].

1.6.1 Definitions

We begin by defining the family of linear programs:

Definition 1.72. Linear Programs:
A linear program is a problem defined by

• A set of real variables {x1, x2, . . . , xn} where n is the number of variables of
the problem.

• An objective function described by a real vector C = (c1, c2, . . . , cn) of size n
too.

• A set of constraints defined by a real matrix (Ai,j) with 1 6 i 6 n, 1 6 j 6 m
and a real vector B = (b1, b2, . . . , bm) where m is the number of constraints of
the problem.

Solving the problem consists of assigning real values to the variables x1, . . . , xn

such that ∀j 6 m,

n∑

i=1

Ai,jxi 6 bj and that maximize

n∑

i=1

cixi.

50 Thomas Bellitto

1. Preliminaries

An assignment of the variables is called a solution. A solution that satisfies all
the constraints is called a feasible solution. A feasible solution that maximizes the
objective function is called an optimal solution. If there is no feasible solution, the
problem in unfeasible and if there are feasible solutions but no optimal solution, the
problem is unbounded.

Such problems are called linear because neither the objective function nor the
constraints involve the product of two variables.

Minimizing the objective function described by a vector C comes down to max-
imizing the objective function described by −C. Similarly, satisfying the constraint

∀j 6 m,

n∑

i=1

Ai,jxi > bj comes down to satisfying ∀j 6 m,

n∑

i=1

− Ai,jxi 6 −bj and a

constraint of the form ∀j 6 m,

n∑

i=1

Ai,jxi = bj can be written as the conjunction of

two inequalities. We can use whichever of these variants is the most convenient for
the problem we study.

A solution defines a point of Rn, a constraint defines a hyperplane and a solution
satisfies a constraint or not depending on which side of the hyperplane it is on.
Hence, the set of feasible solutions is defined by the intersection of a finite number
of half-spaces and is therefore a convex polytope. One can prove that if optimal
solutions exist, at least one of them is a vertex of the polytope and that a vertex
of the polytope that reaches a strictly higher objective value than all its neighbour
(also called a local optimal) is a global optimal i.e. an optimal solution. This is the
key observation that led to Dantzig’s seminal Simplex Algorithm [33] that solves
linear programs very efficiently in practice.

Example 1.73.
The problem P1 that consists of maximizing x1 − x2 under the constraints x1 6

x2 − 1 and x2 6 x1 − 1 is infeasible.
The problem P2 that consists of maximizing 2x1 − x2 under the constraints

x1 − x2 6 0 is feasible. For example, (3, 4) is a feasible solution. However, (k, k)
is a feasible solution for all k ∈ R and reaches the objective value of k. Thus, this
problem is unbounded.

The problem P3 that consists of maximizing x1−x2 under the constraints −1 6

x1 6 5, x2 6 2 and x1 − 2x2 6 0 is bounded and feasible. An optimal solution is
(4, 2) and its value is 2. The problem is represented on Figure 1.29 where the feasible
solutions are depicted in yellow, the objective function in blue, the constraints in
red and the optimal solution in green.

The worst case for the simplex algorithm is when adjacent vertices of the polytope
of feasible solutions achieve the same objective value, as illustrated by the Klee-Minty
cube in [72]. Many variants exist to better deal with some pathological cases but all
the improved versions also have exponential worst-case complexity. The complexity
of linear programming remains open and improving the resolution of linear programs
is a very active field. However, the simplex algorithm yields very good results on
practical instances. For a probabilistic analysis of the simplex algorithm on random
instances that explains its very good results in practice, we refer the reader to [15].

Walks, Transitions and Geometric Distances in Graphs. 51

1.6. Linear programming

0

1

1

x2

x1

1

2

x1 = −1
x1 = 5

x1 = 2x2

x2 = 2
(4, 2)

objective

Figure 1.29: A graphical representation of the problem P3.

1.6.2 Integer linear programming

In many decision or optimization problems including all the problems listed in The-
orem 1.33, the set of possible solutions is discrete. Hence, those problems cannot
be modelled by a linear program. In this subsection, we introduce a stronger model
more suitable for this kind of problems.

Definition 1.74. Integer Linear Programs:
An Integer Linear Program (or ILP) is a linear program whose variables can

only take integer values. A linear program where some of the variables have to take
integer values and some others do not is a Mixed Integer Linear Program (or MILP).

Since the vertices of the polytope of feasible solutions do not necessarily have
integer coordinates, the simplex algorithm does not work anymore. Given an integer
linear program, it is possible to add constraints that do not discard integer solutions
and ensure that the vertices of the polytope have integer coordinates but the number
of constraints to add is not necessarily polynomially bounded in the number of
constraints of the ILP. As a result, ILPs are unfortunately much harder to solve
than regular linear programs.

Theorem 1.75. Karp (1972) [68]
ILP is NP-complete.

Since MILP is a generalization of ILP, it is NP-complete too. However, reduc-
tion to ILP are often natural and there exist several efficient solvers. Hence, when
confronted to optimization problems on graphs, it is often helpful to reduce them
to linear programming or ILP. The rest of this subsection presents two examples of
reduction of important graph problems to ILP that are useful later in this thesis (in
Chapters 5 and 2 respectively).

Example 1.76. Maximum Independent Set (see Definition 1.18)
Consider the following key problem:

Maximum Independent Set.

Input: A graph G.
Output: An independent set of maximum cardinality.

52 Thomas Bellitto

1. Preliminaries

Let V = (v1, v2, . . . , vn) be the set of vertices of G. We define a binary variable
for each vi ∈ V . This variable is equal either to 0 or 1 depending on whether vi
belongs to our maximum independent set.

The objective is to maximize

n∑

i=1

xi (the independent set has to be as big as

possible).
The constraints are ∀i, 0 6 xi 6 1 (binary variables) and ∀{vi, vj} ∈ E(G), xi +

xj 6 1 (two adjacent vertices cannot both belong to an independent set). The value
of the objective function indicates the maximum size of an independent set and the
variables set to 1 in an optimal solution give an example of a maximum independent
set.

Before moving to the second example of reduction to ILP, we need to define
separating sets, which are of great help in Chapter 2.

Definition 1.77. Separating set of two individuals:
Let I be a set of individuals and A be a set of attributes. Let (i, i′) ∈ I2 be such

that i 6= i′. The separating set of i and i′, denoted by Sep(i, i′), is the symmetric
difference of their attributes i.e. the set of attributes that exactly one of them
possesses.

Example 1.78. Minimum Test Cover / Minimum Separating Code in a hypergraph
(see Definition 1.24):

Minimum Test Cover.

Input: A set of individuals I and a set of attributes A ⊂ P(I)
Output: A minimum set of attributes C such that all the individuals of I are
characterized uniquely by the attributes of C they possess.

For each attribute a ∈ A, let xa be a binary variable that indicates whether
a ∈ C. Note that two individuals i and i′ have distinct signatures according to a set
of attributes C if and only if C possesses at least one attribute of their separating
set. We obtain the following system:







minimize
∑

a∈A

xa

∀(i, i′) ∈ I2 with i 6= i′,
∑

a∈Sep(i,i′)

xa > 1

This ILP has a solution if and only if all the separating sets are non-empty i.e.
if and only if no two individuals possess exactly the same attributes. This program
also solves the problem of separating code in a graph (Definition 1.21), which is a
special case of this problem (see Example 1.29). Thus, there exists a separating code
in a graph G = (V,E) if and only if ∀u, v ∈ V 2, N [u] 6= N [v].

Such ILP reformulation of identifying codes problems have been studied exten-
sively by Argiroffo et al. in [3].

If one wants to solve identifying code instead, we need the solution to also be
dominating, i.e. ∀i ∈ I,∃a ∈ C, i ∈ a. While separation and domination seem

Walks, Transitions and Geometric Distances in Graphs. 53

1.6. Linear programming

unrelated at first sight, one can actually easily reduce identification to separation.
Indeed, notice that separation consists of making the signatures of the individuals
pairwise distinct while identification requires that the signatures are both pairwise
distinct and non-empty. Therefore, all we have to do is add to our set of individuals
an artificial individual that has no attribute and whose signature is thus necessarily
empty. We thereby force all the other individuals to have non-empty signatures.
Hence, the identification problem is resolvable if and only if no two individuals pos-
sess exactly the same attributes and each individual possesses at least one attribute.

Finally, we mentioned in Subsection 1.1.4 that in some applications, some at-
tributes are more expensive to test than others and we are more interested in a test
cover of minimum cost than in a test cover of minimum size. The reduction we
present above can easily be generalized to the weighted case: if each attribute a has

a cost ca, we replace our objective function by
∑

a∈A

caxa.

54 Thomas Bellitto

Chapter 2

Separating codes and traffic
monitoring

This chapter mainly presents the work published in [9].

Contents

2.1 Introduction . 55

2.2 The traffic monitoring problem 56

2.3 A new model of separation: separation on a language . 59

2.4 Separation of a finite set of walks 60

2.5 Separation of walks with given endpoints 63

2.6 Separation of walks with forbidden transitions 69

2.7 Conclusion . 75

2.1 Introduction

Characterizing objects by testing as few properties as possible is an important task
in diagnosis or identification problems and has been broadly studied in varying
forms including separating, identifying codes and test covers (see Definitions 1.21
and 1.24). Separating codes have many applications in a wide range of domains.
In each case, we have to deliver a diagnosis with limited or expensive access to
information. Notable examples include visualization and pattern detection [14] [93],
routing [76] or fault detection [87] in telecommunication networks, as well as many
areas of bio-informatics, such as analysis of molecular structures [60] or in medical
diagnosis, where test covers are the core of diagnostic tables [111] and are therefore
important for blood sampling or bacterial identification (see [112] for a survey on
different methods). Separating codes have also been studied under the name of
sieves in the context of logic characterizations of graphs; the size of a minimum
separating code determines the complexity of the first-order logic formula required
to describe a graph [71].

In this chapter, the studied problem is traffic monitoring. Assume that traffic is
going through a network modelled as a directed graph (e.g. cars in a town, packets

55

2.2. The traffic monitoring problem

in a telecommunication network, skiers in a ski resort...) and that we are given the
opportunity to install sensors on the arcs of the graph. Each time an object walks
in the graph and goes through an equipped arc, it activates a sensor, and we know
how many times and in which order each sensor was activated by that object. We
are given the set of possible walks the object can take. Our goal is to find where to
place the sensors so that we are able to determine exactly which route the object
took from the information given by the sensors. This problem has been proven NP-
complete by Maheshwari in [85], even in the case of acyclic directed graphs. Aside
from the complexity aspect, few results have been obtained on the problem. We
have to take into account information such as the multiplicity and the order of the
signals sent by the sensors, which place this problem beyond the expressive power
of existing models for separating codes and their resolution methods.

For the special case of monitoring skiers, Meurdesoif et al. developed a solution
for acyclic directed graphs [88]. Their algorithm is based on double-path detection
and their approach is very different from ours. In this chapter, we present a new,
more flexible approach based on separating codes that allows us to handle more
general problems.

Section 2.2 gives a formal definition of the traffic monitoring problem and outlines
the limitations of the separating code model that make it unsuitable for handling
traffic monitoring. We present in Section 2.3 a new model of separation based on
language theory that overcomes these limitations and even generalizes the traffic
monitoring problem. The next three sections focus on particular cases of traffic
monitoring. Section 2.4 studies the case where the set of walks to separate is finite
and present a reduction to an integer linear program. Section 2.5 studies the case
where we want to separate every walk starting from a given set of starting points
and leading to a given set of destinations. Such sets of walks can be infinite and
would therefore yield infinitely many constraints. We study the underlying language
and exhibit some properties that enable us to reformulate the problem as a standard
integer linear program with finitely many constraints. Section 2.6 solves the same
problem in the more general case of graphs with forbidden transitions. This model
is much more relevant for physical networks such as road networks.

2.2 The traffic monitoring problem

2.2.1 Definition

Here, we model a network with a directed graph and have the option of installing
sensors on the arcs of the graph. All the graphs we consider in this chapter are
directed and can be multigraphs unless explicitly stated otherwise. The aim is to
determine where to place the sensors to be able to reconstruct the route of objects
walking in the graph.

Definition 2.1. Traffic Monitoring:
Let G = (V,A) be a directed graph and let C ⊂ A be the set of arcs equipped

with sensors. We say that the arcs of C are monitored.
When an object walks in G, it activates a sensor each time it uses a monitored

arc. By moving in the graph, the object thus activates the sensors a certain number

56 Thomas Bellitto

2. Separating codes and traffic monitoring

of times in a certain order. We call the ordered sequence of activated sensors the
signature of the walk of the object.

In this problem, we are given the set W (which does not have to be finite) of
potential walks (also called routes) that the object in the graph can take. A set
of arcs C separates W if and only if all the walks in W have different signatures.
If this is the case, the information given by the sensors is sufficient to determine
exactly which route the object picked. Note that we make no assumption on the
speed of the object; the time between the activation of two sensors cannot be used
to determine what the object did in the meantime. However, we know the order in
which the sensors were activated.

The Traffic Monitoring problem is defined as follows:

Traffic Monitoring

Input: A directed graph G = (V,A) and a set W of walks in G.
Output: A minimum set of arcs C such that the signatures of the walks of W are
pairwise distinct.

Example 2.2.

w

u

v

y

z

x

a

b

Figure 2.1: An acyclic graph equipped with two sensors.

Consider the graph depicted in Figure 2.1. Assume that we want to separate
the set W = {W1 = (u, v, x, z),W2 = (u,w, x, z),W3 = (u,w, y, z)} of walks from u
to z. We monitor the set of arcs C = {uw, xz} depicted in blue and we note a the
sensor we put on the arc uw and b the sensor on xz. Thus, the signatures of the
walks of W are respectively sign(W1) = b, sign(W2) = ab and sign(W3) = a which
means that C separates W. One can check that no set of one sensor separates W
and C is therefore an optimal solution.

2.2.2 Limitations of the existing separation models

The problem of traffic monitoring consists of distinguishing a set of individuals
(walks in a directed graph) by testing as few attributes (the arcs that the walks use)
as possible. However, while this problem looks close to the the separation problems
we have introduced so far (see Definition 1.24 for the most general model), it presents
three major difficulties that we have not encountered yet which place it beyond the
expressive power of the models described previously.

The set of activated sensors is not sufficient to identify a walk. Here,
the attributes that we can test are the arcs that a walk uses. However, we expect

Walks, Transitions and Geometric Distances in Graphs. 57

2.2. The traffic monitoring problem

v

w

u

x

z

y

a b

Figure 2.2: A graph G equipped with two sensors.

distinguishable individuals to have different attributes. In the graph G depicted in
Figure 2.2, the walks (u, v, w, u) and (u, v, w, u, v, w, u) are different but the sets of
arcs they use are the same. Since they do not use these arcs the same number of
times, we still can distinguish them: their signatures according to the sensor set
{a, b} are respectively a and aa. Unfortunately, this forces us to take into account
the multiplicity of the attributes of our individuals and leaves us with infinitely
many possible value for each attribute. While this problem cannot be described by
sets of individuals and attributes, we can still try to adapt the method presented in
Example 1.78 by defining the separating sets of two walks (see Definition 1.77) as
the set of edges that the two walks do not use the same number of times. We will
see in the following that this does not work either.

The number of times each sensor is activated is not sufficient to identify
a walk. In Figure 2.2, the walks (u, v, w, u, y, z, u) and (u, y, z, u, v, w, u) not only
use the same arcs but they also use them the same number of times. They can still
be separated; their signatures are indeed respectively ab and ba, but this requires
considering the order of the attributes. This illustrates the limitation not only of
the model but also of the resolution method we showed in Example 1.78. Indeed,
we know that a code separates two individuals if and only if it contains an element
that does so, but one can see here that the sensor set {a, b} separates the walks
(u, v, w, u, y, z, u) and (u, y, z, u, v, w, u) while neither {a} nor {b} does.

The set W of potential walks can be infinite. If the graph contains a cycle,
the number of walks in it is infinite and W can be any subset of it. Therefore,
even checking in finite time whether a given set of sensors separates W is non-trivial
since it requires ensuring that all the walks of W have different signatures. A wrong
intuition is that the problem can be reduced to separation on elementary paths
since non-elementary walks are concatenations of elementary paths (which would be
helpful since there are only a finite number of them), but this does not work. For
example, assume that the set W we want to separate is the set of cycles starting
from and leading to the vertex u. Our set of sensors {a, b} does not separate W since
the cycles (u, v, w, u, y, z, u) and (u, v, x, z, u) both have the signature ab. However,
all the elementary cycles ((u, v, w, u), (u, y, z, u) and (u, v, w, z, u)) have different
signatures (respectively, a, b and ab).

58 Thomas Bellitto

2. Separating codes and traffic monitoring

2.3 A new model of separation: separation on a lan-
guage

2.3.1 Presentation of the problem

As highlighted in Subsection 2.2.2, the existing models for separation do not allow
to address traffic monitoring. This section introduces a new model of separation
based on language theory that overcomes the limitations we pointed out.

Definition 2.3. Separation on a language:

Let A be an alphabet, let u ∈ A∗ and let C be a subalphabet of A. The projection
of u on C, noted pC(u), is the longest subword of u which uses only letters of C.

We define the problem of separation on a language as follows:

Separation on a language

Input: A language L on an alphabet A.
Output: A minimum subalphabet C ⊆ A such that all of the words of L have
different projections on C.

Similarly, we define identification on a language by adding the constraint that
no word of L can have an empty projection on C.

Example 2.4.

The projection on {a, b} of the word abacacb is abaab. Intuitively, all we have to
do is read the word from left to right and select only the letters that belong to the
subalphabet C we project on.

Let us now solve separation on the language L = {aabcc, acabc, baacb, cbaac}.
One can immediately notice that aabcc and acabc use the same letters the same
number of times. Hence, we cannot separate them with an alphabet of one letter.
Furthermore, the projection of both these words on the subalphabet {a, b} is aab so
this subalphabet also does not separate them. The projections of acabc and cbaac
on {b, c} are also the same (cbc). However, the projections of the four words of L
on the subalphabet {a, c} are respectively aacc, acac, aac and caac and are pairwise
distinct. Hence, {a, c} is a solution of the problem and is the only optimal solution.

2.3.2 Expressiveness of the model

It is easy to reduce the problem of test cover to the problem of separation on a
language. Indeed, let I be a set of individuals, let A be a set of attributes and let 6
be a total order on A. Let us associate with each individual i a word on A composed
of all the attributes that i possesses, exactly once, in increasing order according to
6. The subalphabet of A that separates the language of the words associated to the
individuals of I are exactly the set of attributes that separates I. Since test cover
is NP-complete in the size of I and A, it follows that:

Theorem 2.5. Separation on a language is NP-complete in both the size of the
language and the alphabet it is defined on.

Walks, Transitions and Geometric Distances in Graphs. 59

2.4. Separation of a finite set of walks

x

v wu

y z

Figure 2.3: The graph C6.

Example 2.6.

Consider the graph C6 depicted in Figure 2.3 and let us express separating codes
in it as a separating alphabet on a language. As explained in Example 1.29, our
attributes are the N [v] for v ∈ V (C6). We build a word associated to each ver-
tex by looking at the closed neighbourhood they belong to. Finding a separat-
ing / identifying code in C6 comes down to solving separation / identification on
L = {uvx, uvw, vwz, uxy, xyz,wyz}. We saw in Example 1.12 that the subalphabet
{u, v, w} separates L and that {u,w, y} identifies it.

However, even if we do not need to use it in the reduction of separating codes
in a hypergraph, there can be multiple occurrences of a letter in a word, words are
ordered sequences of letters and languages can be infinite. Hence, our new model
overcomes the three limitations of previous models highlighted in Subsection 2.2.2.

Back to our problem of traffic monitoring, let G = (V,A) be a directed graph and
let W be a set of walks in G. Since the set A of arcs of G is finite and non-empty, it
is an alphabet. If we see a walk in G as a sequence of arcs, it is a word of A∗ and the
set W of possible walks is a language on A. Given a set of sensors, the signature of
a walk is its projection on the subalphabet composed of the monitored arcs. Hence,
traffic monitoring is a particular case of separating code in a language.

Unless we allow G to be a multigraph, there are languages that cannot be written
as a set of walks on A(G) and the problems are not equivalent. For example, the
words abd and acd both denote possible walks in G only if b and c have same
origin and target. If G may be a multigraph, traffic monitoring and separation on
a language are equivalent. Indeed, if G has only one vertex and contains a loop for
each letter of A, then every word of A∗ denotes a possible walk in G.

The reduction we presented in this subsection allows us to use tools arising from
separating codes and language theory to address the traffic monitoring problem.
However, our new separation model is still NP-complete in the size of the language
that we want to separate and we saw that in some instances, the language we have
to separate can be infinite. Hence, we do not intend to solve the problem in general,
but we intend to address some classes of sets of walks which are of practical interest.

2.4 Separation of a finite set of walks

The easiest place to start is the case where the set of walks we want to separate is
finite. This happens in particular when we want to solve traffic monitoring on an
acyclic graph or when we can bound the length of the walks in the network. This
problem already covers a wide range of applications.

60 Thomas Bellitto

2. Separating codes and traffic monitoring

Finite Traffic Monitoring

Input: A directed graph G = (V,A) and a finite set W of walks in G.
Output: A minimum set of arcs C such that the signatures of the walks of W are
pairwise distinct.

This problem comes down to solving separation on a finite language. The ILP
we designed in Example 1.78 was based on the central notion of separating sets
(Definition 1.77). The fundamental property of the separating set of two individuals
i and i′ is that a set of attributes separates i and i′ if and only if it contains an
attribute of their separating set. However, we saw that this property no longer
holds for traffic monitoring and separation on a language. What still holds however
is that if a set separates two words w and w′, so do its supersets. Hence, we can
still look for the minimal sets of letters that separate two words w and w′ and we
know that a subalphabet separates w and w′ if and only if it contains one of those
minimal sets.

Definition 2.7. Separating set of two words:
Given two words w and w′ on an alphabet A, a subalphabet C of A belongs to

the separating set Sep(w,w′) of w and w′ if and only if C separates w and w′ and
none of its strict subsets do. The separating set of two words is therefore a set of
sets of letters.

It follows from this definition that a subalphabet C ⊆ A separates two words w
and w′ if and only if there exists C′ ⊆ C such that C′ ∈ Sep(w,w′).

Example 2.8.
Let A = {a, b, c, d, e, f}, u = bfcfabce and v = bcfafbcb. The subalphabet

{c, d, f} separates u and v but does not belong to Sep(u, v) since {c, f} separates
u and v too. However, neither {c} nor {f} separates u and v and {c, f} therefore
belongs to Sep(u, v). We can find that Sep(u, v) = {{b}, {e}, {a, f}, {c, f}}. Since
{b, c, d} contains the subalphabet {b} which belongs to Sep(u, v), it separates u and
v.

We now exhibit some properties of the structure of separating sets that are useful
in computing them efficiently (Theorem 2.11).

Lemma 2.9.
A word u ∈ A∗ is characterized by its projections on the subalphabets of A of

cardinality 2.

Proof. The letter a is the first letter of a word u if and only if it is the first letter
of all projections of u on the subalphabets of cardinality 2 containing a. One can
then remove the a in the first position of the projection of u on the subalphabets
containing a and find the second letter of u. This can be iterated until u is entirely
determined.

Example 2.10.
Let A = {a, b, c} and u ∈ A∗ such that p{a,b}(u) = abba, p{a,c}(u) = aca,

p{b,c}(u) = bbc. Since a is the first letter of the projections of u on {a, b} and {a, c},

Walks, Transitions and Geometric Distances in Graphs. 61

2.4. Separation of a finite set of walks

we know that a is the first letter of u. Thus, there exists v such that u = av. From
the projection of u, we deduce that p{a,b}(v) = bba, p{a,c}(v) = ca, p{b,c}(v) = bbc
and the first letter of v is therefore b. Thus, there exists w such that u = abw and
by iterating the process, we determine that u = abbca.

Theorem 2.11.

The separating set of two words contains only sets of cardinality at most 2.

Proof. Let u and v be two words on an alphabet A and let C be a subalphabet of
A of cardinality at least 3 such that no strict subalphabet of C separates u and v.
Hence, for every subalphabet C′ of C of cardinality 2, pC′(u) = pC′(v). Since C′ is a
subalphabet of C, we know that pC′(u) = pC′(pC(u)) and pC′(v) = pC′(pC(v)). Hence,
pC(u) and pC(v) are two words on C whose projections on every subalphabet C′ of C
are identical and therefore, by Lemma 2.9, pC(u) = pC(v) which means that C does
not separate u and v.

Let u and v be two words of A∗. We can build their separating set as follows:

• If a letter a does not appear the same number of times in u and in v, then a
alone suffices to separate them. We thus add {a} to Sep(u, v) and while the
pairs containing a all separate u and v, they do not belong to the separating
set.

• If a letter a appears neither in u nor in v, containing it would be of no help
to separate u and v. Thus, the separating set contains no pair containing a.
What is left to investigate are pairs {a, b} composed of two letters appearing
the same number of times in u and v. Let k be the number of occurrences
of a in u and v (k 6= 0). Thus, there exist u0, · · · , uk, v0, · · · , vk such that
u = u0au1a · · · auk and v = v0av1a · · · avk. The pair {a, b} belongs to the
separating set if and only if there exists i ∈ [[0, k]] such that ui and vi do not
contain the same number of occurrences of the letter b. These decompositions
of u and v can then be reused when investigating other pairs containing a.

We now present how to take advantage of Theorem 2.11 to separate a finite
language. Let L ⊆ A∗ be the language we want to separate. For each letter a ∈ A,
let x{a} be a binary variable that indicates whether a ∈ C where C is the minimum
separating subalphabet we want to build. For each pair of letters {a, b}, let x{a,b}
be a binary variable that indicates whether both a and b belong to C (thus, x{a,b} =
min(x{a}, x{b})). We obtain the following ILP:







minimize
∑

a∈A

x{a}

∀a 6= b ∈ A, 2x{a,b} 6 x{a} + x{b} (ensures that x{a,b} 6 min(x{a}, x{b}))

∀a 6= b ∈ A, x{a,b} + 1 > x{a} + x{b} (ensures that x{a,b} > min(x{a}, x{b}))

∀v 6= v′ ∈ L,
∑

S∈Sep(v,v′)

xS > 1 (where S can denote a singleton or a pair)

62 Thomas Bellitto

2. Separating codes and traffic monitoring

The solution is thus C = {a ∈ A : x{a} = 1}. The inequalities of the third line
are not necessary to ensure the validity and the optimality of the solution but they
ensure that the values of the pair-variables are determined exactly by the values of
the singleton-variables. Hence the number of degrees of freedom of the problem is
linear in the cardinality of A and not quadratic.

Solving identification instead of separation can be relevant too since domination
let us know that an object is walking in the network and separation indicates which
walk it uses. Like in Example 1.78, it can be solved simply by adding the empty
word ε to the language we separate. Similarly, models where certain arcs of the
network are more expensive to monitor than others can be useful in practice and
can also be expressed by our model. We can solve them by replacing the objective

function by
∑

a∈A

cax{a} where ca is the cost of monitoring the arc a.

Another interesting variant of traffic monitoring is the one where several objects
are walking in the graph and all have different sets of possible walks W1, . . . ,Wk.
Our aim is still to determine which walks each object uses but this variant cannot
easily be reduced to the standard model: indeed, one cannot solve the problem on
each set Wi separately because we need to separate all the Wi with the same censor
set but separating the union of the Wi is superfluous (the case where two walks have
same signature but cannot be used by the same object cannot lead to a situation
where we do not know which walk an object has used and does not have to be
avoided) and leads to sub-optimal solution. We would like to point out that our
method can easily be adapted solve this variant too.

2.5 Separation of walks with given sets of starting points

and destinations

This subsection studies the problem that we call complete traffic monitoring . Here,
we are given a set of potential starting points VI and a set of potential destinations
VF . The set W of walks we want to separate is the set of all the walks leading from
a vertex of VI to a vertex of VF . If the graph contains a cycle, there can be infinitely
many such walks.

Complete Traffic Monitoring

Input: A directed graph G = (V,A) and two subsets of vertices VI and VF .
Output: A minimum set of arcs C such that no two walks leading from a vertex
of VI to a vertex of VF have the same signature.

Of course, since the number of walks to separate can be infinite, it is not feasible
to compute the separating set of each pair of walks. However, notice that the
separating set of two walks is included in the powerset of the set A of arcs of the
graph and can therefore only take a finite number of values. Thus, while the linear
program presented in the previous section would have infinitely many constraints,
only a finite number of them would be distinct. If we can determine which values
of Sep(v, v′) are actually reached, we would therefore be able to describe the same

Walks, Transitions and Geometric Distances in Graphs. 63

2.5. Separation of walks with given endpoints

polytope with only a finite number of constraints. This is the main result of this
section (Theorem 2.22).

2.5.1 Study of the reachable languages

Since we do not want to deal with NP-complete problems on general infinite in-
stances, we know that our solution must take advantage of the specificities of the
instances of complete traffic monitoring. To use our reduction to separation on
languages, we need to understand how the constraints we have on walks translate
on languages. We define reachable languages so that complete traffic monitoring is
equivalent to separation on reachable languages.

Definition 2.12. Reachable languages:
A language L on an alphabet A is reachable if and only if there exists a directed

graph G = (V,A) (A is both the alphabet of L and the set of arcs of the graph), a
set of vertices VI ⊆ V and a set of vertices VF ⊆ V such that L depicts the set of
walks in G leading from a vertex of VI to a vertex of VF . We denote by Reach(A)
the set of reachable languages on an alphabet A.

We now investigate interesting properties of reachable languages.

Lemma 2.13. If L ⊆ A∗ is reachable, then:

∀u, u′, v, v′ ∈ A∗,∀a ∈ A,

{

uav ∈ L

u′av′ ∈ L
⇒
{

uav′ ∈ L

u′av ∈ L

Proof. The idea of the proof is that in complete traffic monitoring, the choices that
the walker has at a given time only depend on the current vertex he is on and cannot
be restricted depending on where he comes from.

More formally, let G = (V,A) be a directed graph and let VI and VF ⊆ V be
such that L is the set of walks leading from VI to VF . Let oa and ta be the origin
and target of the arc a. If uav and u′av′ are in a reachable language L, this means
that:

• u describes a walk that leads from a vertex i ∈ VI to oa;

• u′ describes a walk that leads from a vertex i′ ∈ VI to oa;

• v describes a walk that leads from ta to a vertex f ∈ Vf ;

• v′ describes a walk that leads from ta to a vertex f ′ ∈ Vf .

Hence, uav′ and u′av also describe valid walks leading from a vertex of VI to a
vertex of VF and therefore belong to L too.

Proposition 2.14. Reach(A) (Rat(A)

Proof. The proof is in two steps:
•Reach(A) ⊆ Rat(A). Let G = (V,A), VI and VF be an instance of complete

traffic monitoring and let L be the associated reachable language. The automaton

64 Thomas Bellitto

2. Separating codes and traffic monitoring

whose alphabet is A, set of states is V , set of transitions is T = {(u, uv, v) : (u, v) ∈
A}, set of initial states is VI and set of final states is VF recognizes exactly L. By
Theorem 1.69 (Kleene), this proves that reachable languages are rational.

•Reach(A) 6= Rat(A). Note that the previous construction provides very specific
automata where each letter of the alphabet labels exactly one transition. There
are rational languages that cannot be recognized by such automata. For example,
let L be a reachable language such that ababa ∈ L. Then, (ab)a(ba) ∈ L and
εa(baba) ∈ L. Hence, according to Lemma 2.13, (ab)a(baba) and a(ba) both belong
to L too. Hence, the language {ababa} although rational, is not reachable. If A
contains only one letter a, we find similarly that only ∅, {a} and A∗ are reachable
while {aa} is rational.

2.5.2 Reduction theorem and resolution

We first define the notion of restriction of a rational language which is useful for the
reduction theorems (Theorem 2.22 and Theorem 2.31).

Definition 2.15. Restriction of a rational language:
Given a regular expression of a rational language L (see Definition 1.64), we

define a restriction of L and we denote by L the language built inductively as
follows:

• ∅ = ∅

• ∀a ∈ A∗, {a} = {a}

• L1 + L2 = L1 + L2

• L1L2 = L1 L2

• L∗ = ε+ L+ L
2
.

Notice that the restriction of a language L is not unique. Indeed, two regular
expressions can denote the same language but their associated restrictions can differ.

For example, L∗∗ = L∗ but unless L = ∅, L∗∗ =

4∑

i=0

Li 6=
2∑

i=0

Li = L∗.

Proposition 2.16. Every restriction L of a rational language L is finite.

Proof. The proof by induction is immediate. Indeed, restricted languages are empty,
singletons or built from other restricted languages using only finite unions or con-
catenations, which are operations that preserve the finiteness of the language.

We now introduce the notion of acyclicity of walks and words which helps us
prove the reduction theorems.

Definition 2.17. Acyclic walks and acyclic words:
A walk is acyclic if and only if it does not use twice the same vertex. Hence,

acyclic walks are exactly the elementary walks that are not cycles (see Subsection
1.3.1). Given a graph G = (V,A), a word u ∈ A∗ is acyclic if and only if it denotes
an acyclic walk in G.

Walks, Transitions and Geometric Distances in Graphs. 65

2.5. Separation of walks with given endpoints

Proposition 2.18.
We can extract from every walk W on a graph G an acyclic walk that only uses

vertices and edges that W uses and has the same starting point and destination.

Proof. By Proposition 1.34, we can extract from W a path P with same starting
point and destination as W . Hence, P satisfies the proposition unless it is a cycle.
If P is a cycle on a vertex v, the walk (v) of length 0 satisfies the proposition.

Corollary 2.19. Given an instance of traffic monitoring and the associated reach-
able language L, one can extract from every word u ∈ L an acyclic subword of u that
denotes a path with same starting point and destination as u. We denote this word
by Acycl(u). Notice that Acycl(u) ∈ L and if u denotes a cycle, then Acycl(u) = ε.

Finally, we need the following lemma which helps us prove that a word v in a
reachable language L belongs to every restriction L of L.

Lemma 2.20.
For all rational languages L, for all restrictions L of L and for all words u ∈ L\L,

there exist words v,w1, w2, w3 and x such that u = vw1w2w3x, w1, w2 and w3 are
all non-empty and each of the 8 strings resulting by deleting zero or more of the
substrings w1, w2 and w3 still belongs to L.

Proof. Let L be a reduction of L. We prove the lemma by induction on the regular
expression of L from which L is built:

• if L = ∅, then L \ L = ∅ and the lemma holds for L;

• if L = {u} with u ∈ A∗, then L \ L = ∅ and the lemma holds;

• if L = L1 + L2 and the lemma holds for L1 and L2:

L \L = (L1 +L2) \ (L1 +L2) ⊆ (L1 \L1) + (L2 \L2) and the lemma holds for
L;

• if L = L1L2 and the lemma holds for L1 and L2: let u ∈ L1 and v ∈ L2 and
let us observe that for uv not to belong to L1L2, it is necessary that u /∈ L1 or
v /∈ L2. Hence, L \ L ⊆ (L1 \ L1)L2 + L1(L2 \ L2) and the lemma still holds
for L;

• if L = L′∗ and the lemma holds for L′: we set M = L′ \ {ε}. Note that
L′∗ = M∗. We also set M = L′ − ε.

L \ L =

(
∑

i∈N

L′i

)

\
(

2∑

i=0

L′i

)

=

(
∑

i∈N

M i

)

\
(

2∑

i=0

M
i

)

⊆
2∑

i=0

(M i \M i
) +

∑

i>3

M i

⊆ ∅+ (M \M) + M2 \M2

︸ ︷︷ ︸

=M(M\M)+(M\M)M

+M3M∗

66 Thomas Bellitto

2. Separating codes and traffic monitoring

Since the lemma holds for all words of M \M = L′ \ L′, it holds for all words

of M \M +M2 \M2
. Let us now prove it for u ∈ M3M∗. By definition, u

is the concatenation of v = ε, w1, w2 and w3 ∈ M (which are non-empty by
construction of M) and x ∈ M∗. Hence, even if we remove some of the w, u
is still a concatenation of words of M and therefore still belongs to M∗ = L.

This proves the lemma.

In this section, we only need the following weaker version of Lemma 2.20:

Corollary 2.21.

Let G,VI , VF be an instance of complete traffic monitoring, let L be the associated
reachable language, let L be a restriction of L, and u ∈ L \ L. Then there exists a
vertex q ∈ V (G) such that u denotes a walk using at least four times the vertex q.

Proof. We decompose u with Lemma 2.20. The fact that u still denotes a walk in G
if we remove some of the wi proves that it uses the same vertex between v and w1,
between w1 and w2, between w2 and w3 and between w3 and x. Since the wi are
non-empty, these are four different occurrences of the same vertex in the walk.

We are now ready to present the main theorem of this section (Theorem 2.22).
We prove this theorem in a more general case (Theorem 2.31) in Section 2.6 its proof
is more technical. This proof of Theorem 2.22 gives a better intuition of why the
theorem holds.

Theorem 2.22. Reduction theorem (reachable language version)

For all reachable languages L on an alphabet A, for all restrictions L of L, if
A′ ⊆ A separates L, then it separates L.

Proof. Let L ⊆ A∗ be a reachable language, let C ⊆ A and u, v ∈ L be such
that u 6= v but pC(u) = pC(v) = a0 · · · an. Thus, u = u0a0u1a1 · · · anun+1 and
v = v0a0v1a1 · · · anvn+1 where for all i, ui and vi belong to (A \ C)∗. We want to
prove that there exist two different words that belong to every restriction L of L
and have the same signature.

Since u 6= v, we know that there exists i such that ui 6= vi. Moreover, since L is
reachable, by using Lemma 2.13 twice, we find that u0a0 · · · ui−1ai−1 vi aiui+1 · · · un+1

︸ ︷︷ ︸

=y

still belongs to L. To keep the notation simple, we set y = aiui+1 · · · un+1.

Let x be the longest common prefix of ui and vi. Hence, ui = xbu′i and vi = xcv′i
where b and c ∈ (A \ C)∪ {ε} are the first letters of the suffix of ui and vi that start
after x (or ε if this suffix is empty). Thus, b 6= c and b or c is empty if and only if
x = ui or x = vi respectively (hence, if b = ε then u′i = ε too and the same holds for
c and v′i). We also set z = u0a0 · · · ui−1ai−1x. Thus, u = zbu′iy and we know that
zcv′iy ∈ L too.

We set u = Acycl(z)bAcycl(u′i)Acycl(y) and v = Acycl(z)cAcycl(v′i)Acycl(y).
By definition of the function Acycl, a walk t has the same starting point and desti-
nation as Acycl(t). Hence, we still have u, v ∈ L.

Walks, Transitions and Geometric Distances in Graphs. 67

2.5. Separation of walks with given endpoints

We know that bAcycl(u′i) and cAcycl(v′i) cannot both be empty. If one of them
is, they are thus necessarily distinct and if none of them are, we know that b and c
denote different letters. In all cases, bAcycl(u′i) 6= cAcycl(v′i) and thus, u 6= v.

Since letters denote arcs, the sequence of vertices visited by the walk associated
to Acycl(z)bAcycl(u′i) is the concatenation of the sequences of vertices visited by
the walks associated to Acycl(z) and Acycl(u′i). By definition of acyclicity, it does
not contain more than twice the same vertex. Thus, by construction of u and v,
the walks they denote cannot contain more than three times the same vertex. By
contraposition of Corollary 2.21, this means that for all restrictions L of L, u and
v ∈ L.

We know that for all words t, Acycl(t) only uses letters that t itself uses. Since
ui and vi are words of (A \ C)∗, we know that bAcycl(u′i) and cAcycl(v′i) ∈ (A \ C)∗
too. Hence,

pC(u) = pC(Acycl(z)) pC(bAcycl(u
′
i))

︸ ︷︷ ︸

=ε

pC(Acycl(y))

= pC(Acycl(z)) pC(cAcycl(v
′
i))

︸ ︷︷ ︸

=ε

pC(Acycl(y))

= pC(v)

We proved that for all reachable languages L on an alphabet A, for all subal-
phabets C ⊆ A, if there exist u 6= v in L such that pC(u) = pC(v), then there also
exist two words in every restriction L of L that are different but still have the same
projection on C. The contrapositive of this result is our theorem.

Note that the converse is obviously true since L ⊆ L. Thus, the subalphabets
that separate L are exactly those that separate L.

Hence, given a directed graph, a set VI of potential starting points and a set VF of
potential destinations, we proceed as follows to solve the complete traffic monitoring
problem:

• We know that the language of possible walks leading from a vertex of VI to a
vertex of VF is rational and therefore admits a regular expression. The graph
directly provides an automaton which recognizes it and we can use Lemma
1.70 (Arden) to find an expression of the associated reachable language that
we want to separate.

• We use the regular expression of the language to determine a restriction. We
know by Proposition 2.16 that the restriction is finite.

• Due to Theorem 2.22, the solutions on the restricted language are exactly the
solutions on the initial language. All that is left to do is to use the method
described in Section 2.4 to solve the problem on the restricted language which
is finite.

Example 2.23.
Let us separate all the cycles starting at u in the graph G = (V,A) depicted in

Figure 2.4.

68 Thomas Bellitto

2. Separating codes and traffic monitoring

v

w

u

x

z

y

ab

c

d e

f

g
h

Figure 2.4: A graph G = (V,A) with labelled arcs.

The language of walks we have to separate is L = (abc + adeh + fgh)∗ and is
infinite. A restriction is L = ε + abc + adeh + fgh + abcabc + abcadeh + abcfgh +
adehabc + adehadeh + adehfgh + fghabc + fghadeh + fghfgh. We find that a
minimum separating subalphabet on L (and therefore L) is for example C = {b, d, f}.

2.6 Separation of walks with forbidden transitions

2.6.1 Motivation of the problem

Let us consider the very simple road depicted in Figure 2.5.

u v w x
a

b

c

d

e

f

Figure 2.5: A bi-directed road between the vertices u and x.

Here, a driver who wants to go from vertex u to vertex x will simply use the
path ace. Still, the model that we presented in the previous section requires us to
distinguish all the walks of (a(c(ef)∗d)∗b)∗a(c(ef)∗d)∗c(ef)∗e. Taking into account
such paradoxical behaviours is not only superfluous but it also leads to prohibitive
computation times and tremendously increases the cost of the solutions. Here, at
least three sensors are required to distinguish all the roads leading from u to x while
only one of those roads makes sense in practice.

One could be tempted to get around this problem by contracting the arcs a,
c and e and the arcs b, d and f in a pre-processing step, which would result in
a bi-directed path of length 1 and bring the language to separate down to (ab)∗a.
However, this would not be possible in a more complex road network. Indeed, a
road network can for example feature crossroads on v and w and transversal roads
could lead to those vertices or leave from them. While this does not change the fact
that a driver who wants to go from u to x will always pick the route ace, it can
make the contraction of the vertices v and w impossible and forces us to consider
many absurd walks.

The approach we choose here is to forbid transitions in the graph. In this chapter,
we choose to denote forbidden-transition graphs by a triplet (V,A, F) where F is
the set of forbidden transitions which is usually smaller than the set of permitted
transitions in a road network. In the rest of this section, we refer to graphs with no
forbidden transition as usual graphs.

Walks, Transitions and Geometric Distances in Graphs. 69

2.6. Separation of walks with forbidden transitions

For example, in the road network of Figure 2.5, we can assume that drivers do
not turn back in the middle of the road and forbid the transitions ab, cd and ef . We
thereby reduce the set of roads leading from u to x down to {ace}. This also enables
us to model situations where certain turns are prohibited, which is very common on
road networks. By choosing wisely the forbidden transitions, we only discard routes
that would be prohibited or absurd in practice and we can significantly reduce the
computation time and the cost of the optimal solutions on large instances.

We call restricted traffic monitoring the problem that we study in this section:

Restricted Traffic Monitoring

Input: A directed FTG G = (V,A, F) and two subsets of vertices VI and VF .
Output: A minimum set of arcs C such that no two compatible walks leading
from a vertex of VI to a vertex of VF have the same signature.

2.6.2 Study of the FTG-reachable languages

As in Subsection 2.5.1, we define FTG-reachable languages so that restricted traffic
monitoring is equivalent to separation on FTG-reachable languages.

Definition 2.24. FTG-reachable languages:
A language L on an alphabet A is FTG-reachable if and only if there exists a

directed FTG G = (V,A, F), a set of vertices VI ⊆ V and a set of vertices VF ⊆ V
such that L is the set of compatible walks in G leading from a vertex of VI to a
vertex of VF . We denote by FTGR(A) the set of reachable languages on an alphabet
A.

We now investigate the properties of this new class of languages and compare it
to reachable and rational languages.

Proposition 2.25. Reach(A) (FTGR(A).

Proof. The proof proceeds in two steps:
•Reach(A) ⊆ FTGR(A). Since usual graphs are particular cases of FTGs (with

F = ∅), the languages that are reachable by graphs are clearly reachable by FTGs.
•Reach(A) 6= FTGR(A). Let L be a reachable language on A = {a, b, c, d} such

that ac, ad, bc ∈ L. Since both ac and ad are in L, we know that c and d denote arcs
starting from the same vertex v and leading to a vertex of VF . Furthermore, since
both ac and bc belong to L, we know that a and b both denote arcs leading to v and
starting from a vertex of VI . Hence, bd ∈ L too for every reachable language that
contains ac, ad and bc.

Let us now consider the instance of restricted traffic monitoring given by the FTG
depicted in Figure 2.6 where the transition (b, d) is forbidden, with VI = {u,w} and
VF = {w, x}. One can see that the associated FTG-reachable language contains
ac, ad and bc since they describe compatible walks leading from a vertex of VI to a
vertex of VF . However, it does not contain bd, which uses a forbidden transition.
Hence, the language {ac, ad, bc} is FTG-reachable but not reachable.

It is important to note that Lemma 2.13 also holds for FTG-reachable languages:

70 Thomas Bellitto

2. Separating codes and traffic monitoring

u v w

x

b
c

a

d

Figure 2.6: An example of FTG.

Lemma 2.26. For all FTG-reachable languages L ⊆ A∗:

∀u, u′, v, v′ ∈ A∗,∀a ∈ A,

{

uav ∈ L

u′av′ ∈ L
⇒
{

uav′ ∈ L

u′av ∈ L

Proof. Let G = (V,A, F), VI , VF be an instance of restricted traffic monitoring such
that the set of walks to separate is L. Let us call L′ the set of words that denote
all the walks leading from a vertex of VI to a vertex of VF on the underlying usual
graph G = (V,A) with no forbidden transition. Hence, L′ contains all the words of
L plus eventually some words that contain transitions of F . Since L′ is reachable
by construction and {uav, u′av′} ∈ L ⊆ L′, we know by Lemma 2.13 that uav′ and
u′av belong to L′. Therefore, the only way for uav′ or u′av not to belong to L
is to contain two consecutive letters that denote a forbidden transition. However,
every sequence of two letters in uav′ and u′av also appears in uav or u′av′ which
both belong to L. Thus, uav′ and u′av are in L, which concludes the proof of the
lemma.

We now show that FTGR(A) is a proper subset of Rat(A):

Proposition 2.27. FTGR(A) (Rat(A).

Proof. The proof proceeds in two steps:
•FTGR(A) ⊆ Rat(A). Let L be a FTG-reachable language andG = (V,A, F), VI ,

VF be an instance of restricted traffic monitoring such that W = L. To prove that
L is rational, we create from G an automaton that recognizes L. To do so we create
copies of each vertex of the graph for each possible incidence. For example, if an
arc (u, v) leads to a vertex v, instead of just having a state v in our automaton,
we create a state uv that is final if and only if v is final and from which we can
reach any out-neighbour w of v unless ((u, v), (v,w)) ∈ F . More formally, here is a
construction of an automaton that recognizes L:

◮ its alphabet is the set A of arcs of the graph;

◮ its set of states is VI ∪ {uv : (u, v) ∈ A};

◮ for all v ∈ VI , for all out-neighbours w of v, we create a transition from v to
vw labelled by the arc (v,w). For all states uv, for all out-neighbours w of v,
we create a transition from uv to vw labelled by the arc (v,w) if and only if
((u, v), (v,w)) /∈ F ;

◮ the set of initial states is still VI ;

Walks, Transitions and Geometric Distances in Graphs. 71

2.6. Separation of walks with forbidden transitions

◮ the final states are those whose name ends with a vertex v ∈ VF .

This construction is illustrated in Example 2.28.
•FTGR(A) 6= Rat(A). The counter-example to the other inclusion is the same

as in the proof of Proposition 2.14: the language ababa is rational but not FTG-
reachable since it does not satisfy Lemma 2.26.

Example 2.28.
For example, with the graph in Figure 2.7a, F = {(a, b), (c, d), (d, c), (f, e)}, VI =

{v} and VF = {w}, the associated FTG-reachable language is recognized by the
automaton presented in Figure 2.7b whose initial and final states are respectively {v}
and {vw, xw}. Like in Section 1.5, initial and final states are denoted respectively
by incoming blue arrows and red circles.

u v w x
a

b

c

d

e

f

(a) The FTG of an instance of restricted
traffic monitoring.

b

a

b

c

c

d

f

e

vu

wv

v

uv

xw

vw

wx

(b) The automaton recognizing the associ-
ated FTG-reachable language.

Figure 2.7

Note in particular that since FTG-reachable languages are rational, they admit
a regular expression and therefore, a restriction.

2.6.3 Reduction theorem and resolution

We prove in this subsection that the reduction theorem also holds on FTG-reachable
languages, that generalize reachable languages. However, the proof of the previous
section does not work. Indeed, as illustrated in Example 1.43, Proposition 1.34 about
extracting paths from walks does not hold anymore in FTGs. Similarly, Proposition
2.18 and Corollary 2.19 that play an important role in the proof of Theorem 2.22
do not hold either. Indeed, our method to extract a path from a walk involves
transitions that are not in the initial walk. As long as the only forbidden transitions
are transitions between two opposite arcs (as is the case in Example 2.28), an acyclic
path extracted from a walk cannot involve a forbidden transition and the proof of
Theorem 2.22 applies. In the general case, however, an acyclic path extracted from
a permitted walk may involve forbidden transitions.

To overcome this problem, we look for an alternative characterization of acyclic
walks in usual graphs. Note that acyclic walks are exactly those that cannot be
decomposed as a concatenation of three walks W1W2W3 such that W2 is non-empty
and W1W3 is also a walk in the graph. Indeed, such a decomposition is possible if
and only if W1 and W2 end on the same vertex, which means that the walk is not
acyclic. Therefore, by iterating the deletion of W2 until the walk is acyclic (which

72 Thomas Bellitto

2. Separating codes and traffic monitoring

happens within a finite number of iterations since the length of the walk strictly
decreases), one can extract from every walk W an acyclic walk W ′ with the same
starting point and destination as W and that uses only vertices and edges that W
uses. This reduction can be generalized to walks in FTGs.

Definition 2.29. Max-reduced form of a walk or a word:
A compatible walk W is max-reduced if and only if there does not exist three

walks W1W2W3 such that W2 is non-empty and W1W3 is also a compatible walk in
the graph. Similarly, a word u of a language L is max-reduced in L if and only if
there does not exist u1u2u3 with u2 6= ε such that u = u1u2u3 and u1u3 ∈ L. It
follows that for all languages L and u ∈ L, there exists a subword v of u such that
v is max-reduced and v ∈ L. The word v is a max-reduced form of u.

Note that unlike the acyclic form of a walk or a word, the max-reduced form
is not unique. Indeed, the decomposition u = u1u2u3 is not unique and depending
on which decompositions we use for the reduction, we may end up on different max
reduced words.

Example 2.30.
Let G = (V,A, F) be the graph depicted in Figure 2.8 and let G′ = (V,A) be

the usual graph associated to G.

t

v w

u x

z y

a e

c

b d

fg
h

Figure 2.8: A graph G with two forbidden transitions.

LetW = abcdefgh. SinceW uses three times the vertex u, it is not acyclic. InG′,
we can extract the acyclic walk ah from W . However, the transition ah is forbidden
in G and one cannot extract from W an acyclic compatible walk. However, W is
not a max-reduced compatible walk. Indeed, it can be written as the concatenation
of W1 = abcd, W2 = efg and W3 = h where W2 is not empty and W1W3 = abcdh
is still a compatible walk in G. This reduction cannot be iterated again and abcdh
is a max-reduced compatible form of W . We could also have written W as the
concatenation of W1 = a, W2 = bcd and W3 = efgh and the resulting walk aefgh
is another max-reduced compatible form of W .

Note that the language L in Definition 2.29 does not have to be reachable or FTG-
reachable. Thus, max-reduced words can be defined with respect to any constraints
and not just compatibility with a set of forbidden transitions. Also note that Lemma
2.20 holds for all the rational languages L, which notably include the FTG-reachable
languages.

Walks, Transitions and Geometric Distances in Graphs. 73

2.6. Separation of walks with forbidden transitions

Theorem 2.31. Reduction theorem (FTG-reachable language version)

For all FTG-reachable languages L on an alphabet A, for all restrictions L of L,
if A′ ⊆ A separates L, then it separates L.

Proof. Let L ⊆ A∗ be a FTG-reachable language, let A′ ⊆ A and u, v ∈ L be such
that u 6= v but pA′(u) = pA′(v). We want to prove that for all restriction L of L,
there exist two different words in L that have the same signature.

Since Lemma 2.26 holds on FTG-reachable graphs, we can proceed like in the
proof of Theorem 2.22 to build two words zbu′iy and zcv′iy in L where b and c belong
to A \ {C} ∪ {ε} and are different and u′i and v′i are words on the alphabet A \ {C}
such that if b (resp. c) is empty, then u′i (resp. v

′
i) is empty too.

Let red(z) be a max-reduced form of z such that both red(z)b and red(z)c are
compatible (we iterate the reduction as long as the condition holds). Similarly,
let red(u′i) and red(v′i) be max-reduced forms of u′i and v′i such that b red(u′i) and
c red(v′i) are compatible. Let red(y) be a max-reduced form of y such that u =
red(z)b red(u′i) red(y) and v = red(z)c red(v′i) red(y) are both compatible. Since u
and v are compatible and have same origin and destination as u, they still belong
to L.

Case I: both u and v belong to every restriction L of L. We can prove that
u 6= v and pC(u) = pC(v) like in the proof of Theorem 2.22.

Case II: at least one of u and v, say u does not belong to a restriction L of
L. Hence, by Lemma 2.20, we know that u = sw1w2w3t where w1, w2 and w3 are
all non-empty and can be removed. If a word αβγ denotes a compatible walk, we
say that β is a removable factor if and only if αγ is still compatible. For example,
w1, w2 and w3 are removable factors of u. We recall that u can also be written
red(z)b red(u′i) red(y).

By definition, red(z) is a max-reduced form of z such that red(z)b and red(z)c
are both compatible. This notably means that any further reduction of red(z) would
change its last letter since it changes the letter we can write after it (the last letter
of red(z) would become a letter l such that at least one of the transitions lb and lc is
forbidden). Hence, a removable factor of red(z) is necessarily a suffix. Since we know
by Lemma 2.20 that we can remove w1 from u without making forbidden transitions
appear, this proves in particular that w1 cannot end strictly before red(z). Similarly,
we can prove that a removable factor of red(y) is necessarily a prefix and therefore,
that w3 cannot begin strictly after red(y). Hence, we know that w2 is a factor of
b red(u′i).

By definition of red(u′i), we know that it does not contain any factor that we can
remove without making a forbidden transition appear in b red(u′i). Therefore, since
w2 is removable and a factor of b red(u′i), it has to contain b. Putting it all together,
we find out that w2 is a prefix of b red(u′i), which means that w1 is a suffix of red(z).
Since w1 is non-empty, this proves that s is a strict prefix of red(z). Since w3 is
removable and red(u′i) cannot contain a removable factor, we know that w3 is the
concatenation of a suffix of red(u′i) and a non-empty prefix of red(y). Finally, we

74 Thomas Bellitto

2. Separating codes and traffic monitoring

know that t is a strict suffix of red(y). The relation between the two decompositions
is illustrated in Figure 2.9.

red(z) b red(u′
i) red(y)

s w1 w2 w3 t

Figure 2.9: The two decompositions of u.

Let red(w2) be a max-reduced form of w2 such that red(w2) is non-empty (possi-
ble since w2 is non-empty itself) and s red(w2)t is still compatible. By Lemma 2.20
on u = sw1w2w3t, we know that st and sw2t both belong to L and therefore, that
s red(w2)t ∈ L too.

• By definition, red(w2) is non-empty so st 6= s red(w2)t.

• Since red(w2) uses only letters that w2 uses and w2 is a factor of b red(u′i) ∈
(A \ C)∗, it has an empty signature. Therefore, pC(st) = pC(s red(w2)t).

• By definition, red(w2) cannot contain a removable factor of s red(w2)t unless
it is removable itself. We also know that a removable factor of red(z) is neces-
sarily a suffix and that s is a strict prefix of red(z), which means that s does
not contain a removable factor. Finally, we know that a removable factor of
red(y) is necessarily a prefix and since t is a strict suffix of red(y), it cannot
contain one. This means that s red(w2)t can contain at most two disjoint re-
movable factors (one starting in s and finishing in w2 and one starting in w2

and finishing in t). Similarly, st can contain at most one removable factor. By
Lemma 2.20, this means that st and s red(w2)t belong to every reduction L of
L.

Like in the proof of Theorem 2.22, we proved that for all FTG-reachable lan-
guages L on an alphabet A, for all subalphabets C ⊆ A, if C does not separate L, it
does not separate any restriction L of L either. The contrapositive of this result is
our theorem.

Hence, the method we described at the end of Section 2.5 to solve complete traffic
monitoring also applies on FTGs: given an instance of FTG-reachable separation, we
use the construction described in the proof of Proposition 2.27 to build an automaton
that recognises the associated language, we determine a regular expression of this
language, restrict it and use the tools developed in Section 2.4 to solve the problem
on the resulting language that is finite.

2.7 Conclusion

In this chapter, we studied the problem of traffic monitoring from the point of view
of separating codes. To overcome the limitations of this approach (as described
in Subsection 2.2.2), we introduced a new model of separation based on languages

Walks, Transitions and Geometric Distances in Graphs. 75

2.7. Conclusion

and addressed the traffic monitoring with tools stemming from language theory.
The problem of separation on a language being NP-complete in the size of the
language, we outlined three subproblems relevant in practice, namely finite, complete
and restricted traffic monitoring, and we outlined algorithms to solve each of these
subproblems, even if the set of walks to separate is infinite. The strength and
flexibility of our model enables us to address the case of non-acyclic graphs, infinite
sets of roads to separate and even to impose additional constraints on the sets we
separate such as avoiding certain transitions. The expressiveness of our new model
of separation on a language and the limitations it overcomes also offer hope that it
could be of help in a much wider range of applications than traffic monitoring alone.

Of course, this study also opens the door to many possibilities for improvement
and raises open problems. We present some of them in Section 7.1.

76 Thomas Bellitto

Chapter 3

Minimum connecting transition
sets in graphs

This chapter is based on [10] which is joint work with Benjamin Bergougnoux.

Contents

3.1 Introduction . 77

3.2 Polynomial algorithms and structural results 79

3.3 NP-completeness . 89

3.4 Conclusion . 102

3.1 Introduction

As discussed in Subsection 2.6.1, forbidding transitions in graphs allow to express
stronger constraints on the set of possible walks than what we can do with the
standard graph definitions. This model is suitable to solve routing problems in
many practical cases including optical networks, road networks or public transit
systems among others. We also highlighted in Subsection 1.3.2 that the model of
forbidden-transition graph generalizes other models such as edge-coloured graphs.

Another use of forbidden transitions is to measure the robustness of graph prop-
erties. In [105], Sudakov studied the Hamiltonicity of a graph with the idea that even
an Hamiltonian graph can be more or less strongly Hamiltonian (an Hamiltonian
graph is a graph in which there exists an elementary cycle that uses all the vertices).
The number of transitions one needs to forbid for a graph to lose its Hamiltonicity
gives a measure of its robustness: if the smallest set of forbidden transitions that
makes a graph lose its Hamiltonicity has size 4, this means that this graph can hold
the failure of three transitions, no matter where the failures happen.

In this chapter, the notion we are interested in is not Hamiltonicity but connec-
tivity: the possibility to go from any vertex to any other, which is probably one of
the most important properties we expect from any telecommunication or transport
network. However, our work differs from others in that we are not looking for the
minimum number of transitions to forbid to disconnect the graph but for the min-
imum number of transitions to allow to keep the graph connected. Our problem

77

3.1. Introduction

can be seen as an equivalent of minimum spanning trees for transitions. Indeed, a
minimum spanning trees (see Definition 1.40) is a minimum set of edges that keeps
a graph connected.

In terms of robustness, we are looking for the maximum number of transitions
that can fail without disconnecting the graph, provided we get to choose which
transitions still work. This does not provide a valid measure of the robustness of the
network but measuring the robustness is only one part (the definition of the objective
function) of the problem of robust network design. In most practical situations,
robustness is achievable but comes at a cost and the optimization problem consists
of creating a network as robust as possible for the minimum cost. In this respect,
it makes sense to be able to choose where the failure are less likely to happen.
Our problem highlights which transitions are the most important for the proper
functioning of the network and this is where special attention must be paid in its
design or maintenance. As long as those transitions work, connectivity is assured.

We also would like to point out that in practice, unusable transitions are not
always the result of a malfunction. Consider a train network and imagine that there
is a train going from a town A to a town B and one going from the town B to a
town C. In the associated graph, there is an edge from A to B and one from B
to C but if the second train leaves before the first one arrives, the transition is not
usable and this kind of situation is clearly unavoidable in practice even if no special
problem happens. Highlighting the most important transitions in the network thus
helps design the schedule, even before the question of robustness arises.

Unlike Hamiltonicity (proved NP-complete by Karp in [68]) or the existence
of an elementary path between two vertices (polynomial in usual graphs but NP-
complete in FTGs [106] as discussed in Subsection 1.3.2), testing the connectivity
is an easy task to perform even on graphs with forbidden transitions (note that a
walk connecting two vertices does not have to be elementary). However, we prove
that the problem of determining the smallest set of transitions that maintains the
connectivity of a given graph is NP-hard even on co-planar graphs, which is the
main contribution of this chapter (Theorem 3.19 and 3.22). We also establish a
O(|V |2)-time 3

2 -approximation (Theorem 3.16) and a reformulation of the problem
(Theorem 3.11) which is of great help in the proofs and could hopefully be useful
again in subsequent works.

More formally, the problem we study in this chapter is defined as follows:

Definition 3.1. Connecting transition set:

Let G = (V,E) be a graph and T be a set of transition of G. The graph G is
T -connected and T is a connecting transition set of G if and only if for all vertices
u and v of G, there exists a T -compatible walk between u and v.

Minimum Connecting Transition Set (MCTS)

Input: A connected undirected graph G.
Output: A minimum connecting transition set of G.

All the graphs we consider in this chapter are simple and undirected.

78 Thomas Bellitto

3. Minimum connecting transition sets in graphs

3.2 Polynomial algorithms and structural results

In this section, we only consider graphs with at least 2 vertices; our problem is trivial
otherwise.

3.2.1 General bounds

We start by studying the specific case of trees, which are the smallest connected
graphs.

Lemma 3.2.

If G is a tree then a minimum connecting transition set of G has size |V (G)|−2.

Proof. The proof is in two steps:

• We first prove that |V (G)| − 2 transitions are enough to connect G.

For every vertex v of G, we pick a neighbour of v that we call f(v). For every
neighbour u 6= f(v) of v, we allow the transition uvf(v). We end up with the
transition set T = {uvf(v) : v ∈ V (G), u ∈ N(v) \ {f(v)}}.

Let u and v be vertices of G. Since G is connected, there exists a walk (u, u1,
u2, . . . , uk, v) between u and v. The walk (u, u1, f(u1), u1, u2, f(u2), u2, . . . , uk, f(uk),
uk, v) is T -compatible and still leads from u to v. This proves that G is T -connected.

The size of T is |T | =
∑

v∈V (G)

(d(v) − 1) = 2|E(G)| − |V (G)|. Since G is a tree,

|E(G)| = |V (G)| − 1 and thus, |T | = |V (G)| − 2.

• Let us now prove by induction on the number n of vertices of G that at least
n− 2 transitions are necessary to connect G.

This is obvious for n = 2. Let us assume that it holds for n and let G be a tree
with n+ 1 vertices.

Let T be a minimum connecting transition set of G. Let uv be an internal edge
of T if any (i.e. an edge such that u and v are not leaves). Let a and b be two vertices
from different connected components of G− {u, v}. Every walk leading from a to b
in G therefore uses the edge uv and thus, two transitions containing uv. This proves
that every internal edge of T belongs to at least two transitions of T .

If every edge of G belongs to at least two transitions of T , T has size at least
|E(G)| = |V (G)| − 1 which concludes the proof. Otherwise, let uv be an edge that
belongs to at most one transition of T . This means that one of its vertices, say v,
is a leaf. It is straightforward to check that uv must belong to one transition of T ,
otherwise G would not be T -connected.

Let t be the transition in T containing uv. The graph G− v is T \{t}-connected
and is a tree. By the induction hypothesis, this means that |T \ {t}| > n − 3 and
|T | > n− 2. This concludes the proof of the lemma.

Let us also note that a linear-time algorithm to compute an optimal solution can
be easily deduced from this proof.

Since every connected graph contains a spanning tree (Definition 1.40), we de-
duce the following upper bound on general graphs.

Walks, Transitions and Geometric Distances in Graphs. 79

3.2. Polynomial algorithms and structural results

Proposition 3.3.

Every connected graph G has a connecting transition set of size |V (G)| − 2.

Note however that in the general case, this bound is far from tight. The most
extreme case is the complete graph where every vertex can be connected to every
other with a walk of one edge, that therefore uses no transition. Thus, the empty
set is a connecting transition set of the complete graph. More generally, for every
k∈ [[0, n − 2]], there exists a graph G of n vertices such that a minimum connecting
transition sets on G has size k. Such a graph can be built from a tree of k + 2
vertices by adding n − k − 2 vertices connected to every other vertex of the graph
(including the vertices of the tree).

While graphs with dominating vertices (i.e. vertices connected to every vertex
of the graph) are the most obvious counter-examples, there are many other cases
where a graph G has connecting transition sets smaller than |V (G)| − 2. It may
suggest that the size of a minimum connecting transition set of a graph with k non-
dominating vertices is k − 2 but we show that this is neither a lower bound nor an
upper bound.

Indeed, the graph G depicted in Figure 3.1a has 3 non-dominating vertices (u2,u3
and u4) but we need 2 transitions to connect it (for example, u3u2u1 and u2u1u4,
as depicted in green in the figure). Here, the non-dominating vertices do not induce
a connected graph and one transition is not enough to connect them.

Conversely, the graph H depicted in Figure 3.1b has no dominating vertex and
therefore 7 non-dominating vertices but can be connected with only 4 transitions
(for example, v2v3v4, v3v4v5, v4v5v6 and v1v2v7). Indeed, the vertices v1 and v7,
while not dominating, are connected to every vertex of the graph except each other.
We need three transitions to connect the other vertices of the graph and only one
more to connect both of them.

u1

u4

u3

u2

u5

(a) A graph G.

v1

v6

v5

v4

v3

v2

v7

(b) A graph H .

Figure 3.1

The key to understand what is going on here is to look at the connected compo-
nents of the complementary graph.

Definition 3.4. Co-connected components of a graph

The co-connected components (or co-cc) of a graph G are the connected compo-
nents (or cc) of its complementary graph G.

80 Thomas Bellitto

3. Minimum connecting transition sets in graphs

The following result aims at tightening the upper bound on the size of a minimum
connecting transition set of a graph.

Theorem 3.5.
Every connected graph G has a connecting transition set of size τ(G) where

τ(G) =
∑

C co-cc of G
|C|>2

{

|C| − 2 if G[C] is connected

|C| − 1 otherwise

Proof. By definition, if u and v belong to different co-connected components of G,
there is an edge uv ∈ E(G) and there is therefore a walk between u and v that is
compatible with any transition set. Thus, we only have to find a transition set that
connects all the vertices that belong to the same co-connected component.

Let C be a co-connected component of G with at least 2 vertices. If G[C] is
connected, Proposition 3.3 provides a transition set of size |C| − 2 that connects C.
Otherwise, since G is connected, we know that V (G) 6= C and there exists a vertex
v /∈ C. Hence, v is adjacent to every vertex of C and C ∪ {v} induces a connected
subgraph of G. Proposition 3.3 provides a set of size |C ∪ {v}| − 2 = |C| − 1 that
connects C. By iterating this on every C, we build a connecting transition set T of
size τ(G).

Example 3.6.
Looking back at Figure 3.1a, the co-connected components of the graph G are

respectively {u1}, {u2, u3, u4} and {u5}. We need no transition to connect the
dominating vertices to every other vertex but we need transitions to connect the
vertices of {u2, u3, u4}. However, they do not induce a connected graph and no
transition can connect u2 and u4 using only those vertices. A solution is to add the
vertex u1 and to look for a connecting transition set on the subgraph induced by
{u1, u2, u3, u4}. By Proposition 3.3, we know that there exists one of size 2, and
{u1u2u3, u2u1u4} is an example of such set.

The fact that the graph H depicted in Figure 3.1b has no dominating ver-
tex only means that it has no co-connected component of size 1 but it can still
have several co-connected components. Indeed, its co-connected components are
{v1, v7} and {v2, v3, v4, v5, v6}. The second one induces a connected subgraph and
Proposition 3.3 ensures that it can be connected with 3 transitions, for example
{v2v3v4, v3v4v5, v4v5v6}. The component {v1, v7} does not induce a connected graph
and we need a vertex from another component to connect them. For example, we
can look for a connecting transition set on the graph induced by {v1, v2, v7} and we
find {v1v2v7}.

Notice that this bound can be computed in O(|V (G)|2). However, we show in
the next section that the bound provided by Theorem 3.5 is not tight either.

3.2.2 Connecting hypergraphs

This subsection presents a reformulation of MCTS which is very useful in the sub-
sequent proofs.

We first observe that the bound provided in Theorem 3.5 is not tight.

Walks, Transitions and Geometric Distances in Graphs. 81

3.2. Polynomial algorithms and structural results

Example 3.7.
Let us consider the graph P7 whose vertex set is {v1, . . . , v7} and where every

vertex vi, 2 6 i 6 6 is connected to every vertex of the graph except vi−1 and
vi+1. Since the graph is connected and co-connected, τ(P7) = 5 but the set T =
{v3v1v4, v2v4v1, v6v4v7, v5v7v4} is a connecting transition set of size only 4. To better
understand this solution, let us consider the spanning tree of P7 depicted in Figure
3.2:

v3

v1

v4
v7

v5

v2 v6

Figure 3.2: A spanning tree of P7 and a connecting transition set (depicted in green).

Note that the set T described above does not connect this spanning tree. Indeed,
one cannot go from v1, v2 or v3 to v5, v6 or v7 using a T -compatible walk in the tree.
However, these vertices are already connected to each other by edges that do not
belong to the spanning tree. The optimal solution here does not consist of connecting
a spanning tree of G but in connecting a spanning tree of G[{v1, v2, v3, v4}] and one
of G[{v4, v5, v6, v7}] and the cost is (4− 2) + (4− 2) = 4 instead of 7− 2 = 5.

In fact, we prove that to each optimal connecting transition set T of a graph G
corresponds an unique decomposition of G into subgraphs G1, G2, . . . , Gk such that
T is the disjoint union of T1, T2, . . . , Tk, where each Ti is the connecting transition
set of some spanning tree of Gi. Observe that the size of T is uniquely determined
by its associated decomposition, i.e. , |T | = |V (G1)| − 2+ · · ·+ |V (Gk)| − 2. Hence,
finding an optimal connecting transition set is equivalent to finding its associated
decomposition. In the following, we reformulate MCTS into this problem of graph
decomposition which is easier to work with.

Definition 3.8. Connecting Hypergraph
Let G be a graph. A connecting hypergraph of G is a set H of subsets of V (G)

called connecting hyperedges, such that

• For all E ∈ H, |E| > 2.

• For all E ∈ H, G[E] is connected.

• For all uv /∈ E(G), there exists E ∈ H such that u, v ∈ E (we say that the
hyperedge E connects u and v).

We define the problem of optimal connecting hypergraph as follows:

Optimal Connecting HyperGraph (OCHG)

Input: A connected graph G.

Output: A connecting hypergraph H that minimizes cost(H) =
∑

E∈H

(|E| − 2).

82 Thomas Bellitto

3. Minimum connecting transition sets in graphs

We now prove that OCHG is a reformulation of MCTS (Theorem 3.11).

Proposition 3.9. Let G be a graph and let H be a connecting hypergraph of G.
There exists a connecting transition set T of size at most cost(H).

Proof. By the definition of a connecting hypergraph, for all i, Ei induces a connected
graph and by Proposition 3.3, there exists a subset of transitions Ti of size |Ei| − 2
such that G[Ei] is Ti-connected. Let T =

⋃

i6k Ti. By definition, for all uv /∈ E(G),
there exists i such that u, v ∈ Ei. Since G[Ei] is Ti-connected and Ti ⊆ T , there is a
T -compatible walk between u and v in G which means that G is T -connected. Since

T =
⋃

i6k

Ti, |T | 6
∑

i6k

|Ti| =
∑

i6k

(|Ei| − 2) = cost(H) and we can use the construction

given in the proof of Lemma 3.2 to build T in O(|V (G)| + |E(G)|).

Proposition 3.10. Let T be a connecting transition set of G. There exists a con-
necting hypergraph H = {E1, . . . , Ek} of cost at most |T |.

Proof. Let ∼ be the relation on T such that t ∼ t′ if and only if t and t′ share at least
one common edge. We denote by R the transitive closure of ∼. Let T1, . . . , Tk be the
equivalence classes of R. For all i 6 k, we denote by Ei the set of vertices induced
by Ti. We claim that the hypergraph {E1, . . . , Ek} is a connecting hypergraph and
that for all i, |Ti| > |Ei| − 2.

By construction, for all i, we have |Ei| > 3 since Ti contains at least one transition
and thus, three vertices. Furthermore, since G is T -connected, there exists a T -
compatible walk W between every pair uv /∈ E(G). All the transitions that W uses
must be in T and are pairwise equivalent for R. Thus, for all uv /∈ E(G), there
exists i such that both u and v belong to Ei.

It remains to prove that for all i, |Ei| − 2 6 |Ti|. We prove by induction on
n that every set T of n pairwise equivalent transitions induces a vertex set of size
at most n + 2. This property trivially holds for n = 1. Now, suppose that it is
true for sets of size n and let T be a set of pairwise equivalent transitions of size
n + 1. Let P = t1, . . . , tr be a maximal sequence of distinct transitions of T such
that, for all i 6 r − 1, ti ∼ ti+1. One can check that all the transitions of T \ {t1}
are still pairwise equivalent (otherwise, P would not be maximal). By the induction
hypothesis, T \{t1} induces at most n+2 vertices. Since t1 shares an edge (and thus
at least 2 vertices) with t2, it induces at most one vertex not induced by T \ {t1}.
Thus T induces at most n+ 3 vertices.

The next theorem follows directly from Propositions 3.9 and 3.10.

Theorem 3.11.

Let G be a graph.

• The size of a minimum connecting transition set of G is equal to the cost of
an optimal connecting hypergraph.

• A solution of one of these problems on G can be deduced in polynomial time
from a solution of the other.

Walks, Transitions and Geometric Distances in Graphs. 83

3.2. Polynomial algorithms and structural results

Let us note that the bound provided in Theorem 3.5 suggests a O(|V |2)-time
heuristic for OCHG which consists of building the set H as follows:

H =
⋃

C co-cc of G
|C|>2

{

C if G[C] is connected

C ∪ {v} with v /∈ C otherwise

Example 3.12.
Let G be the graph depicted in Figure 3.1a (see Example 3.6 for a description of

its co-connected components). The aforementioned heuristic provides the connecting
hypergraph {{u2, u3, u4, u1}} of cost 2. Since G achieves the bound provided by
Theorem 3.5, this connecting hypergraph is optimal.

On the graph H depicted in Figure 3.1b, the heuristic provides the connecting
hypergraph {{v1, v7, v2}, {v2, v3, v4, v5, v6}} of cost 4, which is optimal by the same
argument.

On the graph P7 depicted in Figure 3.2, the heuristic provides the connecting
hypergraph {{v1, v2, v3, v4, v5, v6, v7}} of cost 5 while the connecting hypergraph
{{v1, v2, v3, v4}, {v4, v5, v6, v7}} has cost only 4.

Let G be a connected graph and v ∈ V (G). If G − v is not connected, we say
that v is a cut vertex of G. Note that if G is a tree, every vertex of G that is not a
leaf is a cut vertex.

We use the reformulation given by Theorem 3.11 to generalize Lemma 3.2.

Proposition 3.13. If G has a cut vertex, then a minimum connecting transition
set of G has size |V (G)| − 2.

Proof. By Theorem 3.11, it is sufficient to prove that H = {V (G)} is an optimal
connecting hypergraph of G. Let p be a cut vertex of G and C1, . . . , Cr be the
connected components of G − p. Let H = {E1, . . . , Ek} be an optimal connecting
hypergraph of G.

Let a ∈ C1. Suppose that there are two vertices b, c 6= p that do not belong
to C1. Hence, {a, b} /∈ E(G) and there exists i such that a, b ∈ Ei. Since Ei

must induce a connected subgraph of G, we know that p ∈ Ei. Similarly, we know
that there exists Ej that contains a, c and p. Thus, |Ei ∩ Ej| > |{a, p}| > 2 and
cost({Ei ∪ Ej}) = |Ei ∪ Ej | − 2 6 |Ei| − 2 + |Ej | − 2 = cost({Ei, Ej}).

Thus, H \ {Ei, Ej} ∪ {Ei ∪Ej} is also an optimal connecting hypergraph where
the same hyperedge contains both b and c. By iterating this process, we prove that
there is an optimal connecting hypergraph with one hyperedge E that contains a,
p and C2, . . . , Cr. This result trivially holds if there is only one vertex b 6= p that
does not belong to C1.

By iterating the previous process on this hypergraph with a vertex in E ∩ C2

instead of a, we end up with the optimal connecting hypergraph {V (G)} whose cost
is n− 2.

We now investigate in which case there exists an optimal connecting hypergraph
whose hyperedges all induce co-connected graphs. Such hyperedges are easier to
work with and this lemma helps us prove that MCTS is 3

2 -approximable and NP-
hard.

84 Thomas Bellitto

3. Minimum connecting transition sets in graphs

Lemma 3.14.
Let G be a connected graph. If G is co-connected or G has a dominating vertex

x and G− x is connected and co-connected, then there exists an optimal connecting
hypergraph H = {E1, . . . , Ek} on G such that for all i, G[Ei] is co-connected.

Proof. To facilitate the understanding, the construction we use in the proof is illus-
trated in Figure 3.3.

C

E ′

v

u

c1

c2

E1

E2

Figure 3.3: Here, G[C] has five connected components (circled in green), two of
which (c1 and c2) are not connected to E′. To ensure that G[E] is connected, we
need the hyperedges E1 and E2.

Let H be an optimal connecting hypergraph on G and let E be a hyperedge of
H such that G[E] is not co-connected. If E is a clique, then E does not connect any
pair of non-adjacent vertices and H \E is still a connecting hypergraph whose cost is
less or equal than the cost of H. Otherwise, let a and b be two non-adjacent vertices
of E. They therefore belong to the same co-connected component C of G[E].

By way of contradiction, suppose that C is a co-connected component of G.
Since C (E (V (G), we know that G is not co-connected. By hypothesis, it
therefore has a dominating vertex x and C = V (G) \ {x}. Thus, E = V (G). Hence,
cost(H) > |V (G)|−2 which is absurd since {V (G)\{x}} is a connecting hypergraph
of cost |V (G)| − 3.

Thus, C is not a co-connected component of G, which means that there exist
u ∈ C and v /∈ C such that u and v are not adjacent. Since C is a co-connected
component of G[E], we also know that v /∈ E. Hence, there exists E′ 6= E in H that
contains u and v. Let c1, . . . , cl be the connected components of G[C] that are not
connected to any vertex of E′ (if any). By definition of connecting hypergraph, we
know that for all i 6 l, there exists Ei ∈ H that connects a vertex of E′ and a vertex
of ci. We create H ′ from H by replacing E by E \ C and by replacing E1, . . . , El

and E′ by E = E′ ∪ C ∪ E1 ∪ · · · ∪ El.

Walks, Transitions and Geometric Distances in Graphs. 85

3.2. Polynomial algorithms and structural results

We claim that cost(H ′) 6 cost(H) − 1. Indeed, replacing E by E \ C decreases
the cost by |C| while replacing E′ by E′ ∪ C increases the cost of at most |C| − 1
because E′ ∩C contains at least the vertex u. Moreover, we can prove by induction
on i 6 l that the cost of {E′ ∪ C ∪ E1 ∪ · · · ∪ Ei−1, Ei} is greater or equal than the
cost of {E′ ∪ C ∪ E1 ∪ · · · ∪ Ei−1 ∪ Ei}. Indeed, (E′ ∪ C ∪ E1 ∪ · · · ∪ Ei−1) ∩ Ei

has size at least two (it contains at least one vertex in E′ and one in ci ⊂ C, by
definition of Ei). It follows that cost(E) 6 cost({E′ ∪ C,E1, . . . , El}). Therefore,
cost(H ′) 6 cost(H) − 1. Since H is an optimal connecting hypergraph and H ′ has
a smaller cost, we know that H ′ is not a connecting hypergraph. But observe that
H ′ satisfies the following properties:

• Every pair of non-adjacent vertices is still connected by a hyperedge of H ′. In-
deed, if two non-adjacent vertices are connected by E in H they are connected
by E \ C or E in H ′ depending on whether they belong to C or not; if they
are connected by an Ei in H, they are connected by E in H ′ and otherwise,
the hyperedge that connects them in H belongs to H ′ too.

• The graph G[E] is connected. Indeed, the sets E′, E1, . . . , El all induce con-
nected subgraphs of G by definition and are connected to each other because
for all i, Ei ∩ E′ 6= ∅. Furthermore, all the connected components of C are
connected to a vertex of E′, except the ci which are by definition connected
to the Ei.

Thus, either |E \C| < 2 or G[E \C] is not connected. If E \C is a singleton, it
does not connect any pair of non-adjacent vertices. Thus, H ′\{E\C} is a connecting
hypergraph whose cost is strictly smaller than H, which is absurd. Hence, G[E \C]
is not connected, which means it is co-connected. We can therefore apply to E \ C
the same method we used on C.

Just like before, we know that there exist two non-adjacent vertices u′ ∈ E \ C
and v′ /∈ E. Let F ∈ H ′ be the hyperedge that connects u′ and v′, let d1, . . . , dl′ be
the connected components of E \C that are not connected to F and let F1, · · · , Fl′

be hyperedges of H ′ such that Fi connects a vertex of F to a vertex of di. We
create H ′′ from H ′ by removing E \ C and by replacing F1, . . . , Fl′ and F by F =
F ∪ (E \ C) ∪ F1 ∪ · · · ∪ Fl′ .

With the same arguments used for H ′, we can prove that F is connected and
that H ′′ connects every pair of non-adjacent vertices, which means that H ′′ is a
connecting hypergraph. Moreover, with these arguments, we can also prove that
cost(F) 6 cost({F ∪ (E \ C), F1, . . . , Fl′}). Furthermore, removing E \ C from
H ′ decreases the cost by |E \ C| − 2 and replacing F by F ∪ (E \ C) increases it
by at most |E \ C| − 1 since F ∩ (E \ C) contains at least the vertex u′. Hence,
cost(H ′′) 6 cost(H ′) + 1 6 cost(H). Thus, H ′′ is an optimal covering hypergraph.
Observe that H ′′ has strictly fewer hyperedges E such that G[E] is not co-connected
than H. We prove the lemma by iterating this process.

Even if G satisfies the condition of the lemma, there may still exist an optimal
connecting hypergraph H of G and E ∈ H such that G[E] is not co-connected.
In this case, the proof of the lemma implies that G[E] contains two co-connected
components C1 and C2 and that neither G[C1] nor G[C2] is connected.

86 Thomas Bellitto

3. Minimum connecting transition sets in graphs

3.2.3 Polynomial approximation

We prove in this subsection that the bound provided by Theorem 3.5 is actually a
3
2 -approximation of the size of a minimum connecting transition set and that this
bound is tight. This bound, as well as a solution that achieves it, can be computed
in O(|V |2).

We first study the case of graphs that are connected and co-connected.

Proposition 3.15. Let G be a graph of n vertices. If G is connected and co-
connected, then for every connecting hypergraph H of G, cost(H) > 2(n−1)

3 .

Proof. Let G be connected and co-connected. We know by Lemma 3.14 that there
exists an optimal connecting hypergraph H = {E1, . . . , Ek} of G such that for all i,
G[Ei] is co-connected.

First, observe that cost(H) > 2k. Indeed, for every i, G[Ei] is both connected
and co-connected, which is only possible if |Ei| > 4. As cost(H) =

∑

i6k |Ei| − 2,
we deduce that cost(H) > 2k.

Now, we prove that cost(H) > n − k − 1. Observe that since G is connected,
every vertex v belongs to at least one edge in G. Hence, by definition of connecting
hypergraph, there exists E ∈ H such that v ∈ E and

⋃

i6kEi = V (G).

Also note that for all i < k, there exists a hyperedge Ej with j > i that shares
a vertex with a hyperedge of E1, . . . , Ei. Otherwise,

⋃

j6iEj and
⋃

j>iEj cover the
vertices of G and since G is co-connected, this means that there exist u ∈ ⋃j6iEj

and v ∈ ⋃j>iEj such that (u, v) /∈ E(G) but no set of H connects them, which
is impossible. We can assume without loss of generality that this hyperedge that
shares at least one vertex with

⋃

j6iEj is Ei+1.

It is now immediate to prove by induction on i 6 k that
∑

j6i

|Ej | − 2 > |
⋃

j6i

Ej | − i− 1. Thus, cost(H) > n− k − 1.

By combining the two inequalities, we find that cost(H) > 2(n−1)
3 .

We now prove the theorem in the general case.

Theorem 3.16.

For every connected graph G and optimal connecting transition set T of G, the
size of T is at least 2

3τ(G), where τ(G) is the function defined in Theorem 3.5.

Proof. By Theorem 3.11, it is enough to prove that an optimal connecting hyper-
graph has cost at least 2

3τ(G). We already know that the theorem holds if G is
co-connected.

Let H = {E1, . . . , Ek} be an optimal connecting hypergraph of G, let C1, . . . , Cl

be the co-connected components of G and for all j 6 l, let vj be a vertex that does
not belong to Cj.

For all i 6 k and j 6 l such that |Ei ∩ Cj| > 2, we define

Ei,j =

{

Ei ∩ Cj if G[Ei ∩Cj] is connected

Ei ∩ Cj ∪ {vj} otherwise

Walks, Transitions and Geometric Distances in Graphs. 87

3.2. Polynomial algorithms and structural results

and we define F as the union of the {Ei,j}. Note that if G is co-connected, there is
only one co-connected component C1 = V (G) and while there is no vertex v1 /∈ C1,
for all i, G[Ei ∩ C1] = G[Ei] is connected by definition, so we do not need v1 in the
above construction.

Since vj dominates Cj , it is easy to check that every hyperedge of F is connected
and has size at least 2. Furthermore, any two non-adjacent vertices ofG belong to the
same Cj and are connected by an Ei ∈ H. Therefore, they belong to Ei ∩Cj which
has size at least two and thus belongs to F . Hence, F is a connecting hypergraph.

Let Ei ∈ H and let Si be the set of values of j such that Ei,j exists. If there
is only one such value j, then cost(Ei) > cost(Ei,j) = cost(

⋃

j∈Si
{Ei,j}) follows

immediately. Otherwise

cost(
⋃

j∈Si

{Ei,j}) 6
∑

j∈Si

(|Ei ∩ Cj|+ |{vj}| − 2) 6 |Ei| − |Si| 6 |Ei| − 2 = cost(Ei)

still holds. Since F =
⋃

i6k

⋃

j∈Si

{Ei,j}, it follows that cost(F) 6 cost(H) which proves

that F is optimal.
We know that two non-adjacent vertices necessarily belong to the same co-

connected component of G and since a hyperedge Ei,j only contains one vertex
that does not belong to Cj it only connects non-adjacent vertices of one connected
component. For all j, let Fj be the set of hyperedges of F that connect non-adjacent
vertices of Cj . Since Ei,j ⊆ Cj ∪{vj}, Fj is a connecting hypergraph of G[Cj ∪{vj}].

Let Cj be a co-connected component of G and observe that:

• if Cj is not connected, then vj is a cut vertex of Cj∪{vj}. Hence, by Proposition
3.13, cost (Fj) 6 |Cj | − 1.

• if Cj is connected, since it is co-connected by definition, Cj ∪ {vj} admits
by Lemma 3.14 an optimal connecting hypergraph Hj such that for every
hyperedge E of Hj, G[E] is co-connected and thus, vj /∈ E. This proves
that Hj is a connecting hypergraph of G[Cj]. As G[Cj] is connected and

co-connected, we know by the above claim that cost(Hj) >
2(|Cj |−1)

3 .

Thus,

cost(F) =
∑

j6l

cost(Fj) >
∑

j6l







|Cj | − 1 if Cj is not connected

2(|Cj | − 2)

3
otherwise

>
2

3

∑

j6l

{

|Cj| − 1 if Cj is not connected

|Cj| − 2 otherwise

>
2

3
τ(G)

The bound given in Theorem 3.16 is tight. Indeed, let G be the complement of
a star of n branches of 3 edges. The graph G has 3n+1 vertices that we call c, vi,1,
vi,2 and vi,3 with 1 6 i 6 n (in G, c is the center of the star and vi,1, vi,2 and vi,3 are

88 Thomas Bellitto

3. Minimum connecting transition sets in graphs

the three vertices of the branch i). Every vertex of G is connected to every other
except c and vi,1, vi,1 and vi,2 and vi,2 and vi,3 with 1 6 i 6 n. The complement of
the case i = 6 is depicted in Figure 3.4.

cv1,1v1,2v1,3

v2,1

v2,2

v2,3

v3,1

v3,2

v3,3

v4,1 v4,2 v4,3

v5,1

v5,2

v5,3

v6,1

v6,2

v6,3

Figure 3.4: The star of 6 branches of 3 edges.

Since G is both connected and co-connected, our algorithm returns the connect-
ing hypergraph H1 = {V (G)} whose cost is 3n − 1 but the hypergraph H2 whose
hyperedges are the {c, vi,1, vi,2, vi,3} for i ∈ [[1, n]] is a connecting hypergrpah of cost
2n. The case of co-P7 that we studied in Example 3.7 to prove that the algorithm
was not exact is the case i = 2.

3.3 NP-completeness

This section mainly proves the NP-completeness of OCGH and thus MCTS.

Subsection 3.3.1 discusses the generalization of the problem where the input
graph is already a forbidden-transition graph (V,E, T) and we look for the minimum
connecting transition set T ′ ⊂ T . We show that this problem is NP-complete by
reducing the problem of finding elementary paths in FTGs. Section 3.3.2 is devoted
to the proof of the NP-completeness of MCTS in usual graphs. We prove it by
reducing from 3-SAT, and this subsection contains both the presentation of the
gadget and the proof itself. Finally, Subsection 3.3.3 aims at explaining the intuition
behind the previous proof. To do so, we highlight which properties of the gadgets
were needed for the proof to work and present how the gadgets were designed.

3.3.1 MCTS in FTGs

We said in Section 3.1 that the problem of MCTS is helpful to highlight which
transitions of a network are the most important to its connectivity and thus, which
transitions we should strengthen to ensure the robustness of the network. However,
we also pointed out that forbidden transitions are not always the consequence of a
malfunction. In practical applications such as transit network scheduling, certain
transitions cannot be made possible. Hence, we look for connecting transitions
among a set of possible transitions which does not contain all the pair of adjacent
edges of the graph. This subsection is dedicated to the following problem:

Walks, Transitions and Geometric Distances in Graphs. 89

3.3. NP-completeness

Minimum Connecting Transition Set in FTGs

Input: A connected undirected FTG G = (V,E, T).
Output: A minimum transition set T ′ ⊂ T such that of G is T ′ connected.

The vast majority of the results we proved in the previous section do not hold
anymore. Indeed, most of them were based on Proposition 3.3, which states that a
MCTS of a graph G has size at most |V (G)|−2. We show that Proposition 3.3 does
not hold anymore in FTGs.

Example 3.17.
LetG be the graph depicted in the Figure 3.5, where T = {v2iuv2i+1 : i ∈ [[0, k]]}∪

{uv2i+1v2i+2 : i ∈ [[0, k]]} ∪ {v2i+1v2i+2u : i ∈ [[0, k]]}. The only T -compatible walk
leading from v0 to v2k+1 is (v0, u, v1, v2, u, v3, v4, u, . . . u, v2k−1, v2k, u, v2k+1) which
uses all the transitions of T . Therefore, no strict subset T ′ of T connects G and the
only minimum connecting set in G has size 3k = 3

2 (|V (G| − 2).

uv0

v1

v2

v3
v4

v2k−1

v2k

v2k+1

Figure 3.5: A counter-example to the generalization of Proposition 3.3 to FTGs.

Since FTGs are a generalization of usual graphs, the NP-completeness of MCTS
in FTGs is an immediate consequence of the NP-completeness of MCTS in usual
graphs, which we prove in the next section. However, while our proof of NP-
completeness in usual graphs is quite complicated, we show in this subsection that
the NP-completeness of MCTS in FTGs follows quickly from the NP-completeness
of elementary paths in FTGs, which was established by Szeider in [106].

Theorem 3.18.
MCTS in FTGs is NP-complete.

Proof. The problem we reduce is the following:

Elementary path in FTGs

Input: A FTG G = (V,E, T) and two vertices s, t ∈ V .
Output: A T -compatible elementary path in G leading from s to t.

Let G = (V,E, T) be a FTG of n vertices and s and t be two vertices of G. We
define the graph G2 as follows:

• V2 = V ∪ {s′} ∪ {w};

90 Thomas Bellitto

3. Minimum connecting transition sets in graphs

• E2 = {uv : u, v ∈ (V ∪ {w})} ∪ {s′w} ∪ {s′s};

• T2 = T ∪ {s′wv : v 6= t} ∪ {s′sv : sv ∈ E}.

Let us solve MCTS on G2. We note that all the vertices are already connected
to each other by an edge (a walk that does not use any transition) except s′ which
is only connected to s and w.

A T2-compatible walk leaving from s′ can go to w and then, to any vertex u of
V except t, but after u, it cannot go anywhere, except back to w and then to s′.
Hence, a walk W going from s′ to t has to go from s′ to s first. From s, it can then
only go to a neighbour of s in G and must then go to t using only transitions of T2

but the only transitions of T2 it can use at this point belong to T too. Thus, a T2

compatible walk from s′ to t in G2 is the concatenation of s′s and a T -compatible
walk W in G from s to t. Hence, there is a T2-compatible elementary walk from s′

to t in G2 if and only if there is a T -compatible walk from s to t in G.
Let T ′ ⊂ T2 be a connecting transition set of G2. In order to connect s′ and t,

T ′ must contain all the transitions of a walk W between s′ and t. Let nW be the
number of distinct vertices that the walk W uses and mW the length of the walk.
We can assume that all the transitions that the walk uses are distinct. Indeed, if
this is not the case, we can extract from W a compatible walk that only uses distinct
transitions by removing everything between two occurrences of the same transition.
The walk W therefore uses mW − 1 transitions and T ′ has to contain them all.
However, those transitions only connect s′ to the vertices that are used by W and
there are thus still n + 1− nW vertices that are not connected to s′. We note that
each transition can only connect s′ to one new vertex and that one transition is
always enough to connect s′ to a new vertex u since we can always add s′uw. Hence,
the size of our connecting transition set T ′ is mW − 1 + n + 1 − nW . The greatest
value that nW can achieve is nW = mW + 1 and requires W to be elementary.

Therefore, there exists a connecting transition set of size n− 1 in G2 if and only
if there exists a T -compatible elementary walk from s to t in G, which proves that
MCTS in FTGs is NP-complete.

An even stronger model to describe the practical situations where some transi-
tions are harder to ensure than other is the weighted version of MCTS where every
transition of the graph has a cost and we look for a connecting transition set of
minimum weight.

Note that since the weighted version is stronger, Theorem 3.18 also implies the
NP-completeness of this variant. Indeed, forbidden transitions can be modelled
by giving them arbitrarily high weight and it is easy to check whether a weighted
transition set uses a forbidden transition by looking at its cost.

3.3.2 MCTS in usual graphs

This subsection is devoted to the proof of the following theorem, which is stronger
than Theorem 3.18:

Theorem 3.19.
OCGH and MCTS are NP-complete.

Walks, Transitions and Geometric Distances in Graphs. 91

3.3. NP-completeness

Those problems are in NP since the cost of a connecting hypergraph or the size
of a transition set can be computed in linear time. It remains to prove that they are
NP-hard.

The graph involved in this proof are very dense, which makes them hard to visu-
alize. Hence, we prefer to work with their complementary graphs and we therefore
prove the NP-hardness of the following problem that we call co-OCHG:

Definition 3.20. co-Connecting Hypergraph

LetG be a graph. A co-connecting hypergraph is a set of hyperedges E1, . . . , Er ⊆
V (G) such that

• For all i 6 r, |Ei| > 2.

• For all i 6 r, G[Ei] is co-connected.

• For all uv ∈ E(G), there exists i such that u, v ∈ Ei (we say that the hyperedge
Ei covers the edge uv).

co-Optimal Connecting HyperGraph (co-OCHG)

Input: A co-connected graph G.

Output: A co-connecting hypergraph that minimizes cost(H) =
∑

E∈H

(|E| − 2).

The problems of OCHG and co-OCHG are clearly polynomially equivalent
since solving OCHG on a graph G is the same as solving co-OCHG on its com-
plement G.

We prove the NP-hardness of co-OCHG by reducing 3-SAT to it. Let F be a
boolean formula in 3-SAT form, with n variables and m clauses. We may assume
that each variable has positive and negative occurrences in F . Indeed, if a variable x
has no negative occurrence, we may set it to True and we create from F a formula
F ′ by removing every clause that contains x. Determining if F is satisfiable is
equivalent to determining if F ′ is.

We call c1, . . . , cm the clauses of F and x1, . . . , xn its variables. We are going
to build from F a graph GF such that F is satisfiable if and only if GF admits a
co-covering hypergraph of cost 25m.

We start by describing how to construct GF . Additional information about how
GF is designed is given in Subsection 3.3.3. To simplify the construction and the
proofs, we give labels to some vertices and some edges. The labels we use are ci,
Ti,x and Fi,x where i 6 m and x is a variable of F . For each clause ci and each
variable x occurring in ci, we define a gadget g(x, ci). If x occurs positively in ci,
then g(x, ci) is the graph depicted in Figure 3.6a. If x occurs negatively in ci, then
g(x, ci) is the graph depicted in Figure 3.6b. Every gadget g(x, ci) contains a vertex
labelled ci, an edge labelled Fi,x and an edge labelled Ti,x.

We then create a new vertex for each clause ci that we connect to the three
vertices labelled ci and to an additional vertex of degree 1. We thus have for each
clause a graph g(ci) like the one depicted in Figure 3.7.

92 Thomas Bellitto

3. Minimum connecting transition sets in graphs

Fi,x Ti,x

ci

(a) The gadget g(x, ci) if x appears in ci.

Fi,x Ti,x

ci

(b) The gadget g(x, ci) if ¬x appears in ci.

Figure 3.6

Fi,x Ti,x

ci
Ti,z

Fi,z

ci

Fi,y

Ti,y

ci

g(x, ci)

g(y, ci)g(z, ci)

Figure 3.7: The clause-gadget g(ci) associated to the clause ci = (x ∨ ¬y ∨ ¬z).

Finally, for each variable x, let ci1 , . . . , ciℓ be the clause in which x appears.
Observe that ℓ > 2 since every variable has a positive and a negative occurrence.
For each j 6 ℓ, we merge the edge labelled Tij ,x in g(x, cij) with the edge labelled
Fik,x in g(x, cik) (where k = j + 1 mod ℓ) such that the resulting edge has an
extremity of degree one. We consider that this edge has both Tij ,x and Fik ,x as
labels. For example, if a variable x appears positively in the clauses c1 and c4 and
negatively in the clause c3, the Figure 3.8 depicts what the graph looks like around
the gadget associated to the variable x.

By connecting all the gadgets g(x, ci) as described above, we obtain the gadget
graph GF . We may assume that GF is connected. Otherwise, this means that F is
the conjunction of two formulas that share no common variables and F is satisfiable
if and only if those two formulas are. Observe that GF is trivially co-connected.
Moreover, the size of GF is polynomial in n and m.

Let us prove that F is satisfiable if and only if GF admits a co-covering hyper-
graph of cost 25m. We start with the following lemma which proves the existence of
an optimal co-covering hypergraph where every hyperedge is contained in the vertex
set of some clause-gadget.

Lemma 3.21. There exists an optimal co-connecting hypergraph H of GF such that
H = H1 ∪H2 ∪ · · · ∪Hm and for all i 6 m, V (Hi) ⊆ V (g(ci)) where V (Hi) denotes
the vertices used by the hyperedges of Hi.

Proof. In the graph GF , the intersection between two clause-gadgets only contains

Walks, Transitions and Geometric Distances in Graphs. 93

3.3. NP-completeness

F1,x

T4,x

T1,x
F3,x

F4,x

T3,x

c1

c3

c4

Figure 3.8: The gadgets associated to the variable x.

labelled edges. Thus, if a hyperedge E is not included in any clause-gadget, it means
that E covers at least two non-labelled edges from two distinct clause-gadgets. The
Figure 3.9 depicts what we call the junction between two clause-gadgets and outlines
the vertices of interest in this proof. Here, the clause-gadget g(c1) contains the
vertices v0, v1, v2 and v3 and g(c2) contains v2, v3, v4 and v5.

F1,xT2,x

v0 v1 v2 v4 v5

v3c1 c2

Figure 3.9: The junction between the clause-gadgets of c1 and c2.

Since GF is connected and co-connected, we know by Lemma 3.14 that it admits
an optimal co-connecting hypergraph H = {E1, . . . , Ek} such that for all i, GF [Ei]
is connected. The only way for a hyperedge Ei, such that GF [Ei] is connected, to
cover non-labelled edges in several clause-gadgets is to contain the vertices labelled
v1, v2 and v4 at the junction between two clause-gadgets. In this case, we say that
Ei covers the junction between these two gadgets. Let us assume that a hyperedge
Ei covers the junction between two clause-gadgets g(c1) and g(c2). We make no
assumption on whether x appears positively or negatively in c1 and c2.

By definition, Ei contains the vertices v1, v2 and v4. If Ei does not contain v3,
there exists a hyperedge Ej that covers the edge {v2, v3}. Since GF [Ej] is connected,
Ej has to contain at least one of v1 and v4 and therefore shares at least two common
vertices with Ei. This means that we can merge Ei and Ej without increasing

94 Thomas Bellitto

3. Minimum connecting transition sets in graphs

the cost of the solution and thus, we can assume that Ei contains v3. However,
GF [{v1, v2, v3, v4}] is still not co-connected and Ei has to contain other vertices. By
connectivity, Ei must contain at least one of v0 and v5.

• If Ei contains only one of {v0, v5}, say v0, we remove v4 from Ei and add v2 to
the hyperedge Ej that covers {v4, v5}. The hyperedges Ei and Ej still induce
co-connected subgraphs of GF , cover the same edges as before and the cost of
H does not increase.

• IfGF [Ei\{v2, v3}] is connected, we replace Ei in the solution by the hyperedges
F1 = {v0, v1, v2, v3} and F2 = Ei \ {v1, v3}. The hyperedges F1 and F2 have
the same cost as Ei and cover the same edges, GF [F1] is co-connected and so
is GF [F2] (all the vertices are adjacent to v2 in GF [F2] except v4 that can be
connected to v2 through v0) . Let us also note that both GF [F1] and GF [F2]
are connected.

• If Ei contains both v0 and v5 but GF [Ei \ {v2, v3}] is not connected, we know
it has two connected components C1 and C2 (since removing a vertex set of
degree k cannot create more than k connected components). We replace Ei

by F1 = {v2, v3} ∪C1 and F2 = {v2, v3} ∪C2. The hyperedges F1 and F2 have
the same cost as Ei and cover the same edges. Furthermore, both GF [F1]
and GF [F2] are connected since every vertex is adjacent to v3 except v2 that
can be connected to v3 through v0 and v5 in C1 and C2. We also notice that
GF [F1] and GF [F2] are both connected.

In any case, we can build an optimal co-connecting hypergraph where GF [Ei] is still
connected for all i and the hyperedges cover strictly fewer junctions. We can iterate
this process until H satisfies the lemma.

Let H = H1 ∪ · · · ∪Hm be an optimal co-connecting hypergraph of G such that
for all i 6 m, V (Hi) ⊆ V (g(ci)).

Observe that the labelled edges are the only edges of GF to belong to several
clause-gadgets. Thus, for each i 6 m, the non-labelled edges of g(ci) must be covered
by Hi. Consequently, the cost of Hi is fully determined by which labelled edges of
g(ci) it covers. We want to prove that GF is satisfiable if and only if the labelled
edges can be covered in a way such that each Hj has cost 25.

Let ci be a clause of F and let us study the cost of Hi with respect to the labelled
edges it covers. Let x be a variable of ci. The gadget g(x, ci) depends on whether
x appears positively or negatively in ci. In both cases, g(x, ci) contains an edge
labelled Fi,x and an edge labelled Ti,x but those edges may of may not be covered by
Hi. For each variable x that appears in ci, Hi induces one of the 8 graphs depicted
in Figure 3.10 on g(x, ci).

We observe that this graph can only take 4 values up to isomorphism:

• The two configurations of the first line are actually the same. We call this
configuration N (for “none”).

• The two configurations of the last line are the same. We call this configuration
B (for “both”).

Walks, Transitions and Geometric Distances in Graphs. 95

3.3. NP-completeness

x appears positively in ci x appears negatively in ci

Neither Ti,x nor Fi,x are
covered by a hyperedge
of Hi.

Only Fi,x is covered by a
hyperedge of Hi.

Only Ti,x is covered by a
hyperedge of Hi.

Both Ti,x and Fi,x are
covered by a hyperedge
of Hi.

Figure 3.10: The eight possible subgraphs that V (Hi) can induce on g(x, ci).

• The first configuration of the second line and the second configuration of the
third line are the same. We call this configuration U (for “unsatisfied”).

• The second configuration of the second line and the first configuration of the
third line are the same. We call this configuration S (for “satisfied”).

The edges that Hi covers are determined (up to isomorphism) by the config-
urations encountered for each of the three variables that appear in ci. Since the
clause-gadget is symmetric, the order does not matter: the configuration SUN is
exactly the same as the configuration NSU . Thus, we find that Hi can cover 20
different sets of edges up to isomorphisms. We determined the optimal values of
cost(Hi) for each case via a computer-assisted exhaustive search. The results are
presented in Figure 3.11.

Configuration Minimum cost conf. min. conf. min. conf. min.

BBB 28 BUS 26 UUU 26 UNN 25

BBU 27 BUN 26 UUS 25 SSS 25

BBS 27 BSS 26 UUN 25 SSN 25

BBN 27 BSN 26 USS 25 SNN 25

BUU 26 BNN 26 USN 25 NNN 25

Figure 3.11: The cost of an optimal connecting hypergraph on every possible con-
figuration of Hi.

The first observation we make is that the optimal value of cost(Hi) is necessarily
at least 25 and an optimal co-connecting hypergraph on GF therefore always costs
at least 25m. We now investigate the case where the optimal cost is exactly 25m.
To this end, we suppose that H has a cost of 25m.

We note that every configuration that contains a B costs at least 26. Thus, we

96 Thomas Bellitto

3. Minimum connecting transition sets in graphs

know that for each Hi and each x appearing in ci, Hi covers at most one of the two
labelled edges of g(x, ci).

Let us now look at the gadgets associated to a variable x that appears in ℓ clauses
(cf. Figure 3.8). For all j such that x appears in cj , the hypergraph Hj either covers
the two labelled edges of g(x, cj) (B), one (S or U) or none (N). Since every edge
must be covered at least once, this means that a solution where no configuration
involves B also does not feature a configuration involving N . Hence, for every Hi,
the only configurations that occur are S and U .

Let us suppose that Hi covers the edge Ti,x. Since the configuration B is im-
possible, we know that Hi does not cover the edge Fi,x. Let Tj,x be the other label
of the edge Fi,x. Since this edge has to be covered, this means that Hj must cover
the edge Tj,x and because the configuration B is impossible, it cannot cover the
edge Fj,x. For each variable x, we can prove by induction that either, for all gadget
g(x, ci), Hi covers the edge Ti,x or for all gadget g(x, ci), Hi covers the edge Fi,x. In
the first case, we say that the variable x is set to True, and in the second case, to
False. If the variable x is set to True, this means all its positive occurrence leads to
a S configuration in the clause where it appears and conversely.

Finally, we notice that the cost of an optimal co-connecting hypergraph on the
configurations SSS, SSU and SUU is 25 while it is 26 on the configuration UUU .
Therefore, there exists a solution of cost 25m if and only of there exists a way to
affect all the variables to either True or False such that every clause is satisfied by
at least one variable, which comes down to saying that the formula F is satisfiable.

This proves that co-OCGH and therefore OCGH and MCTS are all NP-
hard.

The incidence graph of a formula F is the bipartite graph representing the
relation of belonging between the variables and the clauses of F . Note that if the
incidence graph of F is planar then the graph GF we build in our proof is planar
too. Moreover, Lichtenstein proved in [81] that 3-SAT remains NP-complete when
restricted to formulas whose incidence graph is planar. We can therefore deduce
from our proof the following stronger result:

Theorem 3.22.
The restriction of OCGH and MCTS to co-planar graphs are NP-complete.

3.3.3 Intuition of the proof

This subsection aims at explaining the intuition behind the conception of the gadget
graph. If the gadget graph is connected, we know by Lemma 3.14 that there exists
an optimal co-connecting hypergraph H such that for all hyperedge Ei, G[Ei] is
connected. We can also assume that ∀i, j, |Ei ∩ Ej | 6 1 because otherwise we can
replace Ei and Ej by Ei ∪ Ej in H without increasing its cost. In the rest of this
subsection, we only consider hypergraphs satisying these two properties.

Let us take a look back at the table in Figure 3.11. For the proof to work, we
need all the following properties to hold:

1. Every configuration with a B must have a strictly higher cost than SSS. This
includes for example the configuration BNN which has strictly fewer vertices
and edges than SSS.

Walks, Transitions and Geometric Distances in Graphs. 97

3.3. NP-completeness

2. No configuration can have a strictly smaller cost than SSS. This notably
implies that SSS may not cost more than NNN eventhough NNN has three
fewer vertices and edges that SSS.

3. The configurations SSU and SUU must have the exact same cost as SSS
and therefore be optimal. Otherwise, it would be possible to make up for an
unsatisfied clause if a clause is satisfied by all its variables.

4. The configuration UUU must have a strictly higher cost than the configura-
tions SSS, SSU and SUU .

To design the gadget graph, we define a new class of graphs as follows.

Definition 3.23. Gearwheels:
A gearwheel with n teeth, noted Gn, is the graph constituted of a cycle of length

2n where every vertex of the cycle of even rank has an additional neighbour that
we call a tooth. More formally, V (Gn) = {v1, . . . , v2n, u1, . . . , un} and E(Gn) =
{{vi, vi+1(mod2n)} : i 6 2n} ∪ {{ui, v2i} : i 6 n}.

There are only two optimal co-connecting hypergraphs on a gearwheel Gn: the
one whose hyperedges are the Ei = {ui, v2i, v2i+1, v2i+2} and the one whose hyper-
edge are the Ei = {v2i, v2i+1, v2i+2, ui+1}. Those two optimal solutions and the
gearwheel G4 are illustrated in Figure 3.12.

v2

v1
v8

v7

v6

v5
v4

v3

u1

u4

u3

u2

v2

v1
v8

v7

v6

v5
v4

v3

u1

u4

u3

u2

Figure 3.12: The gearwheel G4 and the two optimal connecting hypergraphs.

It is useful to note that a similar result still holds if we replace the P3 be-
tween two teeth by a C4. More formally, our gearwheel contains the vertices
v2i, v2i+1, v2i+2 and the edges {v2i, v2i+1} and {v2i+1, v2i+2}. We add the vertex
v′2i+1, the edge {v2i, v2i+2} and we replace the edge {v2i+1, v2i+2} by {v2i+1, v

′
2i+1}

and {v′2i+1, v2i+2}. This construction is illustrated in Figure 3.13 where we apply
this transformation to the gearwheel depicted in Figure 3.13a between the teeth
u1 and u2 and we obtain the gearwheel depicted in Figure 3.13b. The transforma-
tion does not change the fact that there are exactly two optimal solutions that we
can obtain from the previous solutions by adding the vertex v′2i+1 to the hyperedge
{ui, v2i, v2i+1, v2i+2} or {v2i, v2i+1, v2i+2, ui+1}.

Our strategy is the following: given a formula, we create a graph as a union
of gearwheels. Each gearwheel represents a variable and its length depends on

98 Thomas Bellitto

3. Minimum connecting transition sets in graphs

v2

v1
v8

v7

v6

v5
v4

v3

u1

u4

u3

u2

(a) The gearwheel G4.

v2

v1
v8

v7

v6

v5
v4 v′3

v3

u1

u4

u3

u2

(b) An alteration of G4.

Figure 3.13: An illustration of the transformation described above.

how many times the variable occurs in the formula. More precisely, we choose to
represent a variable that occurs k times by the gearwheel G3k. Optimal solutions
consist of covering each gearwheel independently either with hyperedges of the form
Ei = {v2i, v2i+1, v2i+2, ui+1} (in which case we say that the variable is set to True)
or of the form Ei = {ui, v2i, v2i+1, v2i+2} (the variable is set to False). The edges we
labelled Fi,x and Ti,x in the gadget graph connect vertices of the cycle to teeth of the
gearwheel, the vertices ci are teeth and the hyperedges of the optimal hypergraphs
naturally induce configurations with S and U and no N or B.

We still have to find a way to ensure that UUU cost more than SSS, SSU
and SUU which implies to find a way to “favour” the configuration S over U . If
a variable x has a positive occurrence in a clause c, we want to favour the solution
that we call True where the hyperedges are the Ei = {v2i, v2i+1, v2i+2, ui+1}. We do
this by adding an edge ex,c between the vertex v2i and the vertex ui+1 for a given
value of i. This edge is only covered by the hyperedge Ei in the solution we call
True. However, G[Ei] is now a C4 and is not co-connected. We avoid this problem
by adding a vertex v′2i+1 between v2i+1 and v2i+2 and by connecting v2i and v2i+2 as
described above. Conversely, if the variable appears negatively, we want to favour
the solution we call False and add the edge {ui, v2i+2}. In Figure 3.14, we add the
edge ex,c = {v2, u2} (depicted in brown) to the graph of Figure 3.13b. This is an
edge of the type {v2i, ui+1}, which denotes a positive occurrence of x in c. Hence,
the solution True (depicted in Figure 3.14a) is satisfied while the solution False
(Figure 3.14b) is unsatisfied. As we can see, no hyperedge covers the edge ex,c in the
unsatisfied configuration. Covering this edge in the unsatisfied configuration would
require to either add the vertex v2 to the hyperedge that contains u2 or to add u2
to the hyperedge that contains v2 (or to merge those hyperedges). In any case, it
increases the cost of the solution by 1.

At this point, our graph consists of gearwheels that denote the variables of the
formula and an extra edge ex,c for each occurrence of a variable x in a clause c. Our
partial solution consists of assigning variables to True or False and choosing one of
the two optimal solutions on gearwheels depending on the value of the variable. We
therefore have an uncovered edge for each unsatisfied occurrence of a variable and

Walks, Transitions and Geometric Distances in Graphs. 99

3.3. NP-completeness

v2

v1
v8

v7

v6

v5
v4 v′3

v3

u1

u4

u3

u2

ex,c

(a) The solution True on a positive occur-
rence of x.

v2

v1
v8

v7

v6

v5
v4 v′3

v3

u1

u4

u3

u2

ex,c

(b) The solution False on a positive occur-
rence of x.

Figure 3.14: The difference between the configurations S and U .

covering this edge would increase by 1 the cost of the solution. Hence, with the
current construction, the configuration UUU costs one more than SUU as intended
but SUU also costs one more than SSU and two more than SSS.

To fix this, we do the following for each clause c. Let x, y and z be the variables
that appear in c. We call ux, vx, uy, vy, uz and vz the respective endpoints of the
edges ex,c, ey,c and ez,c where the vertices u are teeth in their respective gearwheels.
We now create two new vertices w and t and connect w to t,ux,uy and uz. Those
four new edges are still uncovered and may also be adjacent to other uncovered edges
if the clause contains unsatisfied variables. For example, if exactly one variable of
the clause is satisfied by our assignment (this is the configuration we call SUU), the
uncovered edges induce the graph depicted on Figure 3.15a (where x is the satisfied
variable and ex,c is therefore already covered) and the cost of an optimal hypergraph
that co-connects this graph is 4 (two hyperedges of cost 4-2=2, as illustrated in the
figure).

If two of the variables are satisfied, the graph induced by the uncovered edges
contains one fewer vertex and edge and can only be covered by one hyperedge that
induces a co-connected graph. As illustrated in Figure 3.15b, the cost of an optimal
solution is still 6-2=4.

If all three variables are satisfied, the graph induced by the uncovered edges has
one fewer vertex and edge than the graph of SSU and just like before, we can make
one less hyperedge because of that. Indeed, the graph has a dominating vertex and
thus, is not co-connected. The only way to cover those four edges is to add one of
their endpoint to a hyperedge that already contains the other but since no existing
hyperedge contains more than one vertex of this graph, each edge increases the cost
of the solution by 1 and covering this graph still increases the cost by 4 (see Figure
3.15c).

Finally, if a clause is unsatisfied, this means that all its variables are unsatisfied
and the uncovered edges therefore induce the graph depicted in Figure 3.15d. This
graph has one more edge and vertex than the one we had with SUU but it is not
enough to create one more hyperedge that induces a co-connected graph. An optimal

100 Thomas Bellitto

3. Minimum connecting transition sets in graphs

hypergraph that co-connects this graph has cost 5.

w

uyvy

t

ux

vz

uz

vx

ey,c

ez,c

(a) An optimal solution with the configura-
tion SUU .

w

uyvy

t

ux

vz

uz

vx

ez,c

(b) An optimal solution with the configura-
tion SSU .

uy

ux uz

w

t

(c) An optimal solution with the configuration SSS.

w

uyvy

t

ux

vz

uz

vx

ex,c

ey,c

ez,c

(d) An optimal solution with the
configuration UUU .

Figure 3.15: This figure depicts the edges we add to connect the gadgets that de-
note literals from the same clause and show how to cover them. The edges of the
type ex,c that are not covered by the hyperedges of the clause-gadgets (unsatisfied
configurations) are depicted in brown. We depict in gray the edges and vertices that
are already covered by the hyperedges of the clause-gadgets.

With this construction, we use three hyperedges for each occurrence of a variable
in the formula. Two of them have size 4 and therefore cost 2 while the other has
cost 3 because of the additional vertex v′2i+1. Each clause involves three occurrences
of variables and thus, a cost of 21 plus a cost of 4 if the clause is satisfied and 5
if it is not. Hence, our solution costs 25 on the configuration SSS, SSU and SUU
and 26 on the configuration UUU. We proved in the proof of Theorem 3.19 that this
solution is optimal.

Walks, Transitions and Geometric Distances in Graphs. 101

3.4. Conclusion

3.4 Conclusion

In this chapter, we studied the problem of minimum connecting transition set in
graphs. Our study lead to a reformulation of MCTS as the problem we call opti-
mal connecting hypergraph. This new way of seeing the problem helped us prove our
other results, which include exact results on some classes of graphs and a construc-
tive 3

2 -upper bound in the general case. Finally, we proved the NP-completeness of
the problem on usual graphs, which also implies the NP-completeness of more gen-
eral problems such as MCTS in graphs with forbidden transitions or the weighted
version of MCTS. The work presented in this chapter also raises new questions and
open many possibilities for future works, some of which are presented in Section 7.2.

102 Thomas Bellitto

Chapter 4

Density of sets avoiding
parallelohedron distance 1

This chapter presents the results of [5], which is joint work with Christine Bachoc,
Philippe Moustrou and Arnaud Pêcher.

Contents

4.1 Introduction . 103

4.2 Preliminary results and method 108

4.3 Parallelohedron norms in the plane 113

4.4 The norms induced by the Voronöı cells of An and Dn . 121

4.5 The chromatic number of G(Rn, ‖ · ‖P) 126

4.6 Conclusion . 127

4.1 Introduction

In this chapter, we study the density of sets of points of a normed real vector
space that do not contain two points at distance exactly one from each other. This
problem is closely related to a famous graph theory problem called the Hadwiger-
Nelson problem.

4.1.1 Unit-distance graphs and the Hadwiger-Nelson problem

The problem of Hadwiger-Nelson consists of determining the chromatic number of
the plane χ(R2), i.e. the smallest number of colours required to colour every point
of R2 in such a way that two points at distance exactly one from each other receive
different colours. It actually comes down to determining the chromatic number of
the unit-distance graph G(R2).

Definition 4.1. Unit-distance graph:

Let (Rn, ‖ · ‖) be a normed vector space, its unit-distance graph denoted by
G(Rn, ‖ · ‖) is the infinite graph whose vertex set is Rn and whose edge set is {xy :

103

4.1. Introduction

‖x− y‖ = 1}. We denote simply by G(Rn) the unit-distance graph of Rn equipped
with the Euclidean norm.

The problem of determining χ(R2) appeared formally in the literature for the
first time in [52] in 1960 but Jensen and Toft claim in [65] that Nelson studied this
problem as early as 1950. Previous works by Hadwiger, such as [57] in 1944, already
studied closely related problems. Erdős and de Bruijn also studied extensively the
colourability of infinite graphs [17] and partitions of the space in sets avoiding certain
subsets of distances [41] (such as sets avoiding rational distances or sets that do not
contain two pair of points at same distance). In [32], Croft attributes to Erdős the
problem of determining if R2 can be partitioned in four sets that do not contain two
points at distance one from each other, which, in terms of graphs, comes down to
asking if R2 is 4-colourable.

Despite considerable efforts from many researchers, very little is known about
the chromatic number of the Euclidean plane. The lower bound of 4 was established
by L. Moser and W. Moser in [91] by exhibiting a 4-chromatic induced subgraph of
the unit-distance graph of R2 of 7 vertices only (illustrated in Figure 4.1). This was
the best lower bound we knew until April 2018, when De Grey published in [34] a
1581-vertex 5-chromatic induced subgraph of G(R2). Finding smaller such graphs is
currently an extremely active research field. We also know that 7 colours are enough
to colour the plane, as illustrated in Figure 4.2 but this is the best upper bound we
know. Hence, 5 6 χ(R2) 6 7. The problem has also been studied on other fields
than R and Woodall proved in [113] that the rational plane Q2 is 2-chromatic.

Figure 4.1: The Moser spindle is
4-chromatic. Adjacent vertices are
at distance one from each other.

Figure 4.2: A 7-colouring of the Eu-
clidean plane based on a tiling by open
regular hexagons of diameter slightly
smaller than 1.

By adding the constraint that the colour classes are measurable or using an ax-
iomatic that does not include the axiom of choice, we define themeasurable chromatic
number χm(Rn) of Rn, which has also received a lot of attention in the literature.
The importance of the axiomatic in the study of infinite graphs is highlighted by
Erdős and de Bruijn in [17]. Determining the measurable chromatic number of the
plane turns out to be a very difficult problem too but discarding unmeasurable so-
lutions allowed to achieve the lower bound of 5 more easily. Indeed, we know since
1981 (Falconer [44]) that 5 colours are required in dimension 2. Hence, just like in

104 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

the general case, we know that 5 6 χm(R2) 6 7.

The Hadwiger-Nelson problem has also been studied in higher dimensions and
Raiskii [98], Larman and Rogers [78], Larman [77] and finally Frankl and Wilson [51]
proved successively that χ(Rn) is at least linear, quadratic, cubic and exponential in
n. The result of Frankl and Wilson has then been slightly improved by Raigorodskii
in [96] and by combining it with an upper bound from Larman and Rogers [78], we
have:

(1.239 + o(1))n 6 χ(Rn) 6 (3 + o(1))n

For more information on the Hadwiger-Nelson problem and its variants, we refer
the reader to [104] and [97].

4.1.2 Density of sets avoiding distance 1

If the colour classes are measurable, a natural question is to try to determine the
greatest density they can achieve, which leads us to the problem we study in this
chapter. Here, what we try to determine is not the chromatic number of Rn for a
given norm but the density of a maximum independent set.

Definition 4.2. Density of a set:

The density of a measurable set A ⊂ Rn with respect to Lebesgue measure is
defined as:

δ(A) = lim sup
R→∞

Vol(A ∩ [−R,R]n)

Vol([−R,R]n)

Definition 4.3. m1:

A set A in a normed vector space (Rn, ‖ · ‖) avoids distance 1 if and only if
∀x, y ∈ A, ‖x− y‖ 6= 1.

The number m1(R
n, ‖ · ‖) denotes the supremum of the densities of Lebesgue

measurable sets A ⊂ Rn avoiding distance 1:

m1(R
n, ‖ · ‖) = sup

A⊂Rnmeasurable
A avoiding 1

δ(A).

Since the colour classes of a solution of the Hadwiger-Nelson problem avoid
distance 1, we have χm(Rn) > 1

m1(Rn) and we can deduce lower bounds on χm(Rn)

from upper bounds for m1(R
n). The problem of determining m1(R

n, ‖ · ‖) has been
mostly studied in the Euclidean case. The notation m1(R

n) was introduced by
Larman and Rogers in [78] in 1972 as a tool to study the measurable chromatic
number of Rn but the density of sets avoiding distance 1 was already studied by
L. Moser, W. Moser and Croft in [91] and [32] before the number m1(R

n) was
introduced and without the goal to study the Hadwiger-Nelson problem.

A natural approach to build a set avoiding distance 1 that works for any norm
starts from a packing of unit balls. Let Λ be a set such that if x, y ∈ Λ, then the unit
open balls B(x, 1) and B(y, 1) do not overlap. Thus, the set A = ∪λ∈ΛB(λ, 1/2) of
disjoint open balls of radius 1/2 is a set avoiding 1 and its density is δ

2n where n is

Walks, Transitions and Geometric Distances in Graphs. 105

4.1. Introduction

Figure 4.3: A set avoiding distance 1 built from a sphere packing.

the dimension of the space and δ is the density of the packing. This construction is
illustrated in Figure 4.3.

In the Euclidean plane, the density of an optimal packing of discs of radius
1 is about 0.9069 and this approach therefore provides a lower bound of about
0.9069/4 ≃ 0.2267 for m1(R

2, ‖·‖2). By refining this idea, Croft manages to build in
[32] a set of density about 0.9655/4 ≃ 0.2293 which is the best lower bound known
for m1(R

2, ‖·‖2). His construction is a hexagonal arrangement (using the lattice A2)
of blocks defined by the intersection of a circle and a regular hexagon (illustrated in
Figure 4.4).

Figure 4.4: The block of Croft’s construction is the intersection of a circle (depicted
in red) and a regular hexagon (in blue).

Regarding upper bounds, an important objective would be to prove a conjecture
by Erdős [107]:

Conjecture 4.4. Erdős:

m1(R
2) <

1

4
.

Prior to our work, the best upper bound was due to Keleti, Matolcsi, de Oliveira
Filho and Ruzsa [70], who have shownm1(R

2) 6 0.258795. In Chapter 5, we improve
this bound to 0.256828 (Theorem 5.13).

This problem is also studied in higher dimension where the conjecture of Erdős
was generalized by Moser, Larman and Rogers [78]:

Conjecture 4.5. Larman, Moser and Rogers

∀n > 2,m1(R
n) <

1

2n
.

106 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

A weaker result has been proved in [70]: a set avoiding distance 1 necessarily
has a density strictly smaller than 1

2n if it has a block structure, i.e. if it may be
decomposed as a disjoint union A = ∪Ai such that if x and y are in the same
block Ai then ‖x − y‖ < 1 and if they are not, ‖x − y‖ > 1. For example, the
construction of Croft (the densest set avoiding distance 1 that we know), as well as
the colour classes of Figure 4.2 (the best colouring of the plane we know) have block
structures. On the other hand, the colour classes of the 2-colouring of Q2 by Woodall
[113] do not have a block structure and since Q2 is dense in R2, colour classes with
a block structure would not allow for better colouring in Q2 than in R2: the best
colouring we know where colour classes have block structure uses 7 colours instead
of 2. Without the assumption that the solutions have block structure, the known
upper bounds are pretty far from 2−n, even asymptotically: the best asymptotic
bound is m1(R

n) 6 (1 + o(1))(1.2)−n (see [78], [6]).

In the general case of an arbitrary norm, we make the remark that if the unit
ball tiles Rn by translation (see Definition 1.53), the method described previously
to build a set avoiding distance 1 from a packing provides a set of density exactly
1/2n, as illustrated in Figure 4.5.

Figure 4.5: The natural packing of density 1/2n.

Bachoc and Robins conjecture that this construction of a set avoiding distance
1 is optimal:

Conjecture 4.6. Bachoc-Robins:

If ‖ · ‖ is a norm such that the unit ball tiles Rn by translation, then

m1(R
n, ‖ · ‖) = 1

2n
.

Note that the lower bound of Croft in the Euclidean case proves that the above
construction is not always optimal when the unit ball does not tile the plane but the
construction of Croft still provides a bound strictly lower than 1

22
. The conjecture

of Erdős implies that because the Euclidean disc does not tile the plane, the bound
of 1

4 cannot be achieved.

In this chapter, we prove Conjecture 4.6 in dimension 2 (Theorem 4.23).

We recall that the Voronöı region of a n-dimensional lattice (Definition 1.51) tiles
Rn by translation and is therefore a parallelohedron (Definition 1.53). Conversely,
Voronöı conjectured that all parallelohedra are, up to affine transformations, the
Voronöı regions of lattices (Conjecture 1.56) and we know that this result holds in

Walks, Transitions and Geometric Distances in Graphs. 107

4.2. Preliminary results and method

dimension up to 4 (Theorem 1.57). Note that m1(R
n, ‖ · ‖) is clearly left unchanged

under the action of a linear transformation applied to the norm. So, with respect to
Voronöı’s conjecture, it is natural to consider in first place the polytopes that are
Voronöı regions of lattices.

The most obvious family of lattices is the family of cubic lattices Zn, whose
Voronöı regions are hypercubes. We will see that in this case, Conjecture 4.6 holds
trivially (Proposition 4.14). The next families of lattices to consider are arguably
the root lattices An and Dn (defined in Example 1.52).

We will prove Conjecture 1 for the Voronöı regions of the lattices An in ev-
ery dimension n > 2 (Theorem 4.24). For the lattices Dn, we can only show the
inequality

m1(R
n, ‖ · ‖P) 6

1

(3/4)2n + n− 1
(Theorem 4.28)

which is however asymptotically of the order O
(

1
2n

)
.

The chapter is organized as follows: Section 4.2 presents our method and give
preliminary results that we use throughout the chapter. In Section 4.3, we prove
Theorem 4.23 which is the case n = 2 of Conjecture 4.6. Section 4.4 is dedicated to
the families of lattices An and Dn. Finally, in Section 4.5, we discuss the chromatic
number of the unit distance graph G(Rn, ‖ · ‖P).

4.2 Preliminary results and method

4.2.1 Independence ratio of a discrete graph

A set avoiding distance 1 in Rn is exactly an independent set in G(Rn, ‖·‖). Therefore
m1(R

n, ||.||) is by definition the supremum of the densities achieved by independent
sets. To study this value, we extend the notion of independence ratio to all discrete
infinite graphs. The implication of the independence ratio of discrete graphs on the
density of independent sets in uncountable graphs is examined in Subsection 4.2.2:

Definition 4.7. Independence ratio of discrete graphs:
The independence ratio α(G) of a finite graph G is the ratio of the maximum

size of an independent set and the number of vertices of the graph: α(G) = α(G)
|V | .

Let G = (V,E) be a discrete induced subgraph of G(Rn, ‖ · ‖). For A ⊂ V , we
define the density of A in G:

δG(A) = lim sup
R→∞

|A ∩ VR|
|VR|

where VR = V ∩ [−R,R]n. Based on this notion, we extend the definition of the
independence ratio to discrete graphs:

α(G) = sup
A independent set

δG(A).

The following lemma provides an equivalent formulation of α(G). Being able to
switch from a definition to the other makes α easier to manipulate in the proofs of
this chapter.

108 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

Lemma 4.8. Let G = (V,E) be a discrete graph with V ⊂ Rn. If every v ∈ V has
finite degree, then

α(G) = lim sup
R→∞

α(GR),

where GR is the finite induced subgraph of G whose set of vertices is VR = V ∩
[−R,R]n.

In other words, for every discrete graph G whose vertices all have finite degree,

sup
A independent

lim sup
R→∞

|A ∩ VR|
|VR|

= lim sup
R→∞

sup
A independent

|A ∩ VR|
|VR|

.

Note that the hypothesis that all the vertices of the graph have finite degree is
weaker than requiring the graph to have finite max degree since the graph can have
infinitely many vertices.

The rest of this subsection is devoted to the proof of this lemma along with a
discussion on the importance of the hypothesis that all the vertices of the graph
have finite degree.

Proof. Let G be a graph satisfying the assumptions of the lemma. First of all,
we remark that if G is finite, there exists R such that GR = G. Thus, α(G) =
lim supR→∞ α(GR) is obvious. From now on, we will assume that G has infinitely
many vertices.

The inequality α(G) 6 lim supR→∞ α(GR) clearly holds. Indeed, if A is an

independent set ofG, then A∩VR is an independent set ofGR and so |A∩VR|
|VR| 6 α(GR),

leading to δG(A) 6 lim supR→∞ α(GR).

We will prove the reverse inequality by exhibiting a sequence of independent sets
Sk such that, for all k > 1, lim supR→∞

|Sk∩VR|
|VR| > lim supR→∞ α(GR)− 1

k
.

Let rℓ be a strictly increasing sequence of real numbers tending to infinity and
such that limℓ→∞ α(Grℓ) = lim supR→∞ α(GR), and let Arℓ be an independent sub-
set of Vrℓ of maximal cardinality. The set Sk will be constructed from the sequence
of independent sets Arℓ ; however, we will need, for reasons that will appear more
clearly later, that the successive rings Vrℓ \ Vrℓ−1

are sufficiently large. In view of
that, we construct a convenient subsequence of rℓ, with the help of a function ϕ(ℓ),
in the following way.

Since the graph G is discrete, we know that for all R, VR is finite and since all
the vertices of the graph are of finite degree, we know that the neighbourhood N [VR]
is finite too. We denote by b(R) the smallest real number such that N [VR] ⊂ Vb(R).
Then, we set ϕ(0) = 0 and, inductively for ℓ > 0,

ϕ(ℓ+ 1) = min
{

i : ri > b(rϕ(ℓ)) and |Vri \ Vrϕ(ℓ)
| > |Vrϕ(ℓ)

\ Vrϕ(ℓ−1)
|
}

.

The existence of ϕ(ℓ+1) at each step of the recursion holds because limℓ→∞ rℓ =
+∞ and Vrϕ(ℓ)

\ Vrϕ(ℓ−1)
is finite (since G is discrete). To keep the notations simple,

we set Rℓ = rϕ(ℓ).

We will need the following property of the number of elements of the rings
associated to the sequence Rℓ:

Walks, Transitions and Geometric Distances in Graphs. 109

4.2. Preliminary results and method

Proposition 4.9. For all ℓ ∈ N, for all m ∈ N∗:

|VRℓ+1
\ VRℓ

| 6 1

m
|VRℓ+m

\ VRℓ
|

Proof. We have |VRℓ+m
\ VRℓ

| =
m−1∑

k=0

|VRℓ+k+1
\ VRℓ+k

| and each term of the sum is

larger than |VRℓ+1
\ VRℓ

|, by definition of ϕ.

Now we are ready to define the sets Sk. We set, for k > 0,

Sk :=
{
v ∈ V : ∃i ∈ N such that v ∈ ARik

and ∀j < i, v /∈ N [ARjk
]
}
.

It remains to prove that Sk is an independent set and satisfies the inequality

lim sup
R→+∞

|Sk ∩ VR|
|VR|

> lim sup
R→∞

α(GR)−
1

k
.

Proposition 4.10. Sk is independent.

Proof. Let v1 and v2 be two vertices of Sk and let i1 and i2 be such that v1 ∈ ARi1k
,

v2 ∈ ARi2k
and for all j < i1 (respectively i2), v1 (resp. v2) /∈ N [ARjn

]. If i1 = i2,
then v1 and v2 both belong to ARi1k

which is independent. Consequently, they are
not connected. If say, i1 > i2, from the very definition of Sk, v2 /∈ N [ARi1k

], so v1
and v2 are not connected either.

Lemma 4.11. For all k > 1, i > 0,
|Sk∩VRik

|

|VRik
| >

|ARik
|

|VRik
| −

1
k
.

Proof. We prove the lemma by induction on i:
• The property holds for i = 0 since Sk ∩ VR0 contains AR0 .
• Let i ∈ N be such that the property holds. We have:

|Sk ∩ VR(i+1)k
|

|VR(i+1)k
| =

|Sk ∩ VRik
|

|VR(i+1)k
| +

|Sk ∩ (VR(i+1)k
\ VRik

)|
|VR(i+1)k

| . (1)

Let us lower bound the two terms of this sum one after the other.
◮ Since ARik

is an independent set of maximal cardinality in VRik
, we know that

|ARik
| > |AR(i+1)k

∩ VRik
|. Combining with the induction hypothesis, we find

|Sk ∩ VRik
|

|VRik
| >

|AR(i+1)k
∩ VRik

|
|VRik

| − 1

k

and thus:
|Sk ∩ VRik

|
|VR(i+1)k

| >
|AR(i+1)k

∩ VRik
|

|VR(i+1)k
| − 1

k

|VRik
|

|VR(i+1)k
| . (2)

◮ By definition, Sk contains all the vertices of AR(i+1)k
except those that are in

the neighbourhood of an ARjk
with j < i+1. Since for all j < i, N [ARjk

] ⊂ Vb(Rik),

110 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

the set Sk∩ (VR(i+1)k
\VRik

) contains AR(i+1)k
\Vb(Rik). We also have by construction

that b(Rik) 6 Rik+1. Thus,

|Vb(Rik) \ VRik
| 6 |VRik+1

\ VRik
| 6 1

k
|VR(i+1)k

\ VRik
|

where the second inequality follows from Proposition 4.9.
This leads to the following inequality:

|Sk ∩ (VR(i+1)k
\ VRik

)|
|VR(i+1)k

| >
|AR(i+1)k

\ VRik
|

|VR(i+1)k
| − 1

k

|VR(i+1)k
\ VRik

|
|VR(i+1)k

| (3)

By combining equations (1), (2) and (3), we find:

|Sk ∩ VR(i+1)k
|

|VR(i+1)k
| >

|AR(i+1)k
|

|VR(i+1)k
| −

1

k

which concludes the proof of Lemma 4.11.

Now we are ready to conclude the proof of Lemma 4.8. Indeed, for all k > 1, we
have

α(G) = sup
S

lim sup
R→+∞

|S ∩ VR|
|VR|

> lim sup
R→+∞

|Sn ∩ VR|
|VR|

> lim
i→∞

|Sk ∩ VRik
|

|VRik
|

> lim
i→∞

|ARik
|

|VRik
| −

1

k

> lim sup
R→∞

α(GR)−
1

k
.

In the limit when k → ∞, we obtain that α(G) > lim supR→∞ α(GR).

To conclude our discussion of Lemma 4.8, we would like to point out that the
inequality α(G) 6 lim supR→∞ α(GR) does not necessarily hold if G has vertices
with infinite degree, by bringing out a counterexample.

Let G be the graph given by V = Z and E = {{a, b}|a < 0 and b > −2a}.
Let N ∈ N and let SN =

[[
−N,−N

2

]]
∪ [[0, N]]. One can see easily that SN is

independent in G. Hence, lim supR→∞ α(GR) > limN→∞
|SN |
|VN | =

3
4 .

Let S be an independent set of G. If S contains a vertex indexed by a negative
integer −k, it cannot contain any vertex indexed by i > 2k and can therefore only
contain finitely many vertices indexed by positive integers. Hence, limN→∞

|S∩VN |
|VN | 6

1
2 . If S does not contain any vertex indexed by a negative integer, the inequality

limN→∞
|A∩VN |
|VN | 6

1
2 holds as well. Thus,

sup
S

lim sup
N→+∞

|S ∩ VN |
|VN | 6

1

2

which proves that α(G) 6= lim supR→∞ α(GR).

Walks, Transitions and Geometric Distances in Graphs. 111

4.2. Preliminary results and method

4.2.2 Discretization of the problem

In the case of the chromatic number, we saw that the chromatic number of induced
discrete subgraphs of a graph G(Rn, ‖ · ‖) provides lower bounds on the chromatic
number of G(Rn, ‖ · ‖) itself. For example, Figure 4.1 proves that χ(R2) > 4. While
this is less trivial, a similar result also holds for the independence ratio:

Lemma 4.12. Discretization lemma:

Let G = (V,E) be a discrete subgraph induced by G(Rn, ‖ · ‖). Then

m1(R
n, ||.||) 6 α(G).

Proof. By Lemma 4.8, we may assume without loss of generality that G is finite.
In this case the result is well known: the proof below is included for the sake of
completeness.

Let R > 0 be a real number, and let X ∈ [−R,R]n be chosen uniformly at ran-

dom. For S ⊂ Rn, the probability that X is in S is P(X ∈ S) =
Vol(S ∩ [−R,R]n)

Vol([−R,R]n)
.

Notice that lim sup
R→∞

P(X ∈ S) = δ(S).

Let S ⊂ Rn be a set avoiding 1. We define the random variable N = |(X+V)∩S|.
On one hand, we have:

E

[
N

|V |

]

=
1

|V |E
[
∑

v∈V

1{X+v∈S}

]

=
1

|V |
∑

v∈V

P(X ∈ S − v).

For every v, we have lim sup
R→∞

P(X ∈ S − v) = δ(S − v) = δ(S).

On the other hand, since for v1, v2 ∈ V , ‖(X − v1)− (X − v2)‖ = ‖v1 − v2‖, and
(X + V) ∩ S ⊂ S, we have, for any R > 0,

N

|V | 6 α(G).

Thus we get,

δ(S) 6 α(G).

Example 4.13.

The independence number of the Moser Spindle (Figure 4.1) is 2 and its inde-
pendence ratio is therefore 2

7 . Hence, m1(R
2) 6 2

7 .

In this chapter and the next, our strategy to find upper bounds on m1 is to
transfer the study of sets avoiding distance 1 to a discrete setting in which such sets
are easier to characterize. This comes down to studying the independence ratio of
appropriately chosen induced subgraphs of G(Rn, ‖ · ‖). Most of the graphs we deal
with in this chapter are infinite but we look for graphs with specific structures that
help us bound their independence ratio. The most difficult task here is to design a

112 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

discrete vertex set V that provides a good upper bound on m1(R
n, ‖ · ‖) and at the

same time is easy to analyze.
To illustrate this approach, we consider the cubic lattice, which is the easiest

to deal with. If L = 2Zn, the Voronöı region of L is the hypercube whose vertices
are the points of coordinates (±1,±1, . . . ,±1) and the associated norm is the norm
‖ · ‖∞ presented in Example 1.47.

Proposition 4.14. For every n > 1, we have:

m1(R
n, ‖ · ‖∞) =

1

2n

Proof. Let V = {0, 1}n ⊂ Rn and let G be the subgraph of G(Rn, ‖ · ‖∞) induced
by V . Following the definition of V , for every v, v′ ∈ V with v 6= v′, we have
‖v − v′‖∞ = 1. Hence, G is a complete graph and its independence number is 1.
Since it has 2n vertices, applying Lemma 4.12, we get

m1(R
n, ‖ · ‖∞) 6

α(G)

|V | =
1

2n
.

A strength of our approach that we would like to highlight is that it gives bounds
directly on the chromatic number of the space and not only on the measurable
chromatic number as m1 usually does. Indeed, by determining the independence
ratio α(G) of a subgraph G of G(Rn, ‖ · ‖), we prove that G has chromatic number
at least 1

α(G) and the chromatic number of G gives a lower bound on the chromatic

number of G(Rn, ‖ · ‖).

4.3 Parallelohedron norms in the plane

In this section, we prove Theorem 4.23. We saw in Subsection 1.4.4 that the par-
allelohedra in dimension 2, are, up to an affine transformation, squares or Voronöı
hexagons (see Figure 1.23).

We have already seen that m1(R
2, ‖ · ‖∞) = 1

4 (Proposition 4.14). It remains
to deal with Voronöı hexagons. Even though it is not true that every hexagonal
Voronöı region is linearly equivalent to the regular hexagon, we first consider the
regular hexagon in order to present in this basic case the ideas that will be used in
the general case.

4.3.1 The regular hexagon

This subsection is devoted to the proof of the following theorem:

Theorem 4.15.
If P is the regular hexagon in the plane, then

m1(R
2, ‖ · ‖P) =

1

4
.

We would like to thank Dmitry Shiryaev [103] for the idea of this proof:

Walks, Transitions and Geometric Distances in Graphs. 113

4.3. Parallelohedron norms in the plane

Proof. Let P be the regular hexagon in R2. We denote by S its set of vertices and
by ∂P its boundary. Thus, ‖x‖P = 1 if and only if x ∈ ∂P. We label the vertices of
P modulo 6 as described in Figure 4.6.

We call V the lattice generated by the set 1
2S. Let GP be the subgraph of

G(R2, ‖ · ‖P) induced by V . We shall prove that α(GP) 6 1/4. To do so, we
introduce an auxiliary graph G̃ = (Ṽ , Ẽ) with the same set of vertices Ṽ = V and
such that for all x, y ∈ V , (x, y) ∈ Ẽ if and only if x − y ∈ 1

2S. This graph is the
Cayley graph of V generated by 1

2S. It is depicted in Figure 4.7.

v5

v1

v4

v2

v0v3

Figure 4.6: The labelling of the vertices
of the regular hexagon.

Figure 4.7: The Cayley graph G̃. The
unit polytope is depicted in green and
the origin in red.

We denote by d̃(x, y) the distance between two vertices x and y in the graph G̃
(i.e. the minimum length of a path between x and y in G̃, which is not to be confused
with the geometric distance between x and y). We define the distance d̃(A,B) in G̃
between two subsets of vertices A and B as the minimum distance between a vertex
of A and a vertex of B. This graph has a property we call property D which is
crucial for our proof of Theorem 4.15:

Lemma 4.16. Let u1 and u2 be two vertices of G̃. Then:

d̃(u1, u2) = 2 ⇒ ‖u1 − u2‖P = 1. (Property D)

Proof. Since G̃ is vertex-transitive, we may assume without loss of generality that
u1 = 0. One can see in Figure 4.7 that the vertices at graph distance 2 from 0 are
points of ∂P and are therefore at geometric distance 1 from 0.

It can be noted, although it will not be useful here, that the equivalence d̃(u1, u2) =
2 ⇔ ‖u1 − u2‖P = 1 holds.

Auxiliary graphs satisfying (Property D) help us bound m1(R
n, ‖ · ‖P) thanks to

the following lemma:

Lemma 4.17. Let ‖ · ‖P be a norm in Rn defined by a polytope P. Let G̃ be a graph
with vertex set V that satisfies (Property D). Let A ⊂ V be a set avoiding polytope
distance 1. Then A can be written as the union of cliques of G̃: A =

⋃

C∈C C where
if C,C ′ ∈ C with C 6= C ′, then N [C] ∩N [C ′] = ∅.

Proof. Since A avoids polytope distance 1, following Lemma 4.16, a connected com-
ponent C of G[A] cannot contain two vertices at graph distance 2 from each other.

114 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

Hence, all the vertices of C are at graph distance 1 from each other which means
that C is a clique.

Conversely, if two different cliques C and C ′ ⊂ A share a common neighbour,
then d̃(C,C ′) 6 2. Since C and C ′ are two different connected components of G[A],
d̃(C,C ′) > 1 and thus, d̃(C,C ′) = 2. This is impossible, since A avoids polytope
distance 1.

Now we define the local density of a clique C of G̃: δ0(C) = |C|
|N [C]| . In the next

lemma, we analyze the different possible cliques of the graph G̃ that we constructed
for the regular hexagon, and determine their local density:

Lemma 4.18. For every clique C ⊂ G̃, δ0(C) 6
1

4
.

Proof. Let C be a clique of G̃. Since G̃ is vertex transitive, we can assume without
loss of generality that 0 ∈ C. Up to isomorphisms, there are only three possible
cliques in G̃. Their neighbourhoods are depicted in Figure 4.8:

• C = {0}: its neighbourhood is {0} ∪ 1
2S (see Figure 4.8a). Thus δ0(C) = 1

7 .

• C =
{
0, v02

}
, and δ0(C) = 2

10 = 1
5 (see Figure 4.8b).

• C =
{
0, v02 ,

v1
2

}
, and δ0(C) = 3

12 = 1
4 (see Figure 4.8c).

(a) (b) (c)

Figure 4.8: The possible cliques (in red) and their neighbourhood (in blue).

We now have all the ingredients to prove that the density of a set avoiding
distance 1 for distance induced by the regular hexagon cannot exceed 1/4 (Theorem
4.15):

Following Lemma 4.12, it is sufficient to prove α(GP) 6
1
4 . If A ⊂ V is a set

avoiding distance 1, we know by Lemma 4.17 that it may be written as the union of
cliques in G̃, whose neighbourhoods are disjoint. Hence, the density of A is upper
bounded by the maximum local density of a clique in G̃. From Lemma 4.18, we
conclude that α(GP) 6

1
4 .

Walks, Transitions and Geometric Distances in Graphs. 115

4.3. Parallelohedron norms in the plane

4.3.2 General Voronöı hexagons

This subsection deals with the general hexagonal Voronöı region P of the plane. We
prove that:

Theorem 4.19.
If P is an hexagonal Voronöı region in the plane, then

m1(R
2, ‖ · ‖P) =

1

4
.

Proof. Let P be the hexagonal Voronöı region of a lattice L ⊂ R2. Let {β0, β1} be
a basis of L such that the vectors β0 , β1, β2 = β1 − β0, and their opposites define
the faces of P. We label vi (with 0 6 i 6 5) the vertices of P in such a way that
βi = vi + vi+1, where i is defined modulo 6. This labelling is illustrated in Figure
4.9.

v1

v2

v3

v4

v5

v0

β1β2 = β1 − β0

β3 = −β0

β4 = −β1 β5 = β0 − β1

β0

Figure 4.9: The vectors βi and the vertices of the hexagon.

In order to prove Theorem 4.19, just like in the case of the regular hexagon,
we construct a graph GP induced by G(R2, ‖ · ‖P), and prove that α(GP) 6

1
4 .

Unfortunately, in the general case, the vertices of the hexagons of a tiling of the
plane do not form a lattice. We use a different approach to build a graph GP and
an auxiliary graph G̃ that satisfies a weaker version of (Property D).

To build the vertex set V of GP , we start from the lattice 1
2L and add the

translates of the vertices VP of P by the vectors of 1
2L. We set A = 1

2L and
B = VP + 1

2L so that V = A ∪ B; this construction is represented in Figure 4.10
where the vertices of A are depicted in red, and those of B in green.

Let us note that for every i, vi+2 = vi mod L. Indeed,

vi+2 − vi = vi+2 + vi+1 − (vi + vi+1) = βi+1 − βi = βi+2.

As a consequence, we may write V as the disjoint union of three translates of L:

V =
1

2
L ∪

(
1

2
L+ v0

)

∪
(
1

2
L+ v1

)

This implies that the density of B in V is twice that of A.

116 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

(a) The lattice A. (b) The translate of P by 1

2
β1.

(c) The vertex set V = A ∪B.

Figure 4.10

The auxiliary graph G̃ = (Ṽ , Ẽ) has the same vertex set as GP and we define its
edges as follows. By construction, there are exactly 7 vertices of V in the interior
of P: the center 0 ∈ A, and six points of B denoted s0, . . . , s5, with si =

vi−1+vi+1

2 .
For every point of a ∈ A, we create the edges (a, a+ si) and (a+ si, a+ si+1) for all
i from 0 to 5. This is illustrated in Figure 4.11.

(a) The edges we add for each vertex a ∈ A. (b) The graph G̃.

Figure 4.11

Note that in the case of the regular hexagon, this construction leads to the same
graph G̃ that we considered in Subsection 4.3.1.

Let us now describe the neighbourhood in G̃ of each type of vertex. By con-
struction, a vertex of A has 6 neighbours, and they all belong to B. A vertex a+ si
of B also has six neighbours. Three of them are elements of A, namely a, a + βi

2

and a+ βi−1

2 and the other three are elements of B, namely, a+ si−1, a+ si+1 and

a+ vi. Figure 4.12 illustrates the neighbourhoods of the vertices of G̃.
It should be noted that in the general case, our graph G̃ does not satisfy

(Property D): indeed, the vertices s0 and s3 are at graph distance 2 in G̃ but
not necessarily at polytope distance 1. However, this property holds for the pairs
of vertices points that share a common neighbour in B. We prove this in the next

Walks, Transitions and Geometric Distances in Graphs. 117

4.3. Parallelohedron norms in the plane

0

v1

v2

v3

v4

v5

v6

β1

2
β2

2

β3

2

β4

2

β5

2

β6

2

s2

s3

s4

s5

s0

s1

Figure 4.12: The basic pattern in G̃.

lemma, which plays the role of Lemma 4.16 in this subsection:

Lemma 4.20. If two vertices x, y ∈ V are at distance 2 from each other in G̃ and
have a common neighbour z ∈ B, then ‖x− y‖P = 1.

Proof. Case I: if at least one of the vertices x and y is in A. In this case we
may assume that x ∈ A and by vertex-transitivity of A, that x = 0. Then z is one of
the si, and since y is a neighbour of z, y must be in the set {0, si−1, si+1,

βi

2 ,
βi−1

2 , vi}.
Since the first three are not at graph distance 2 from 0, y is one of the last three
vertices, and they all are in ∂P. Thus, ‖x− y‖P = 1.

Case II: x, y, z ∈ B. Then we may assume without loss of generality x = si−1,
and z = si. Since z has only three neighbours in B, y can be either si+1 or vi. We
have:

si+1 − si−1 =
vi + vi+2

2
− vi + vi−2

2
=

vi+2 − vi−2

2
=

vi+2 + vi+1

2
=

βi+1

2

and

vi − si−1 = vi −
vi + vi−2

2
=

vi − vi−2

2
=

vi + vi+1

2
=

βi
2
.

In both cases, ‖x− y‖P = 1.

Note that an alternative statement of Lemma 4.20 is that the forbidden-transition
graph obtained from G̃ by forbidding the transition set F = {uvw : v ∈ A} observes
(Property D) i.e. two vertices of G̃ are at geometric distance 1 if and only if they
are connected by a compatible walk of length 2.

Let U ⊂ V be a set of vertices avoiding polytope distance 1, let C be a connected
component of G̃[U] and let N [C] be its closed neighbourhood. We set NB[C] =

N [C] ∩B and δ0B(C) = |C|
|NB[C]| .

The following lemma is the analogue of Lemma 4.17 in this situation: we show
that if C and C ′ are two different connected components, then NB[C] and NB [C

′]
must be disjoint:

Lemma 4.21. Let U ⊂ V be a set avoiding polytope distance 1. If C 6= C ′ are two
distinct connected components of G̃[U], then NB[C] ∩NB [C

′] = ∅.

118 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

Proof. If a vertex z ∈ B is in both NB[C] and NB [C
′], then there exists x ∈ C,

y ∈ C ′ such that d̃(x, z) = d̃(z, y) = 1. Since C and C ′ are connected components
of G̃[U], we have d̃(x, y) > 1. Thus d̃(x, y) = 2 and by Lemma 4.20, ‖x − y‖P = 1,
which is impossible, since U avoids 1.

Now we study the different possible connected components:

Lemma 4.22. Let U ⊂ V be a set avoiding polytope distance 1. If C is a connected
component of G̃[U], then

δ0B 6
3

8
.

Proof. We enumerate the possible connected components of G̃[U]. Let us start with
the isolated points. Up to translations by 1

2L, the two possible connected components
of size 1 are:

• C = {0} ⊂ A. Its neighbourhood is made of six vertices which are all in B
(see Figure 4.13a). Thus, δ0B(C) = 1/6.

• C = {si} ⊂ B. We know that such a vertex has three neighbours in B (Figure
4.13b). Hence, δ0B(C) = 1/4.

(a) The vertex {0} has six strict neighbours
in B.

(b) The vertex {si} has three strict neigh-
bours in B.

Figure 4.13: The two possible types of connected component of size 1 and their
neighbours in B. Elements of C are denoted by circled vertices.

We now focus on the connected components of size 2. Since a vertex in A has
all its neighbours in B, such a connected component cannot contain two elements
of A. Thus, up to translation, the possibilities are:

• C = {0, si} and the only neighbour in B that is not already a neighbour of 0
is vi (see Figure 4.14a). Thus, δ0B = 2/7.

• C = {si, si+1} and the neighbours in B are si−1, vi, si+2, vi+1 (Figure 4.14b).
Thus, δ0B = 2/6 = 1/3.

There are two kinds of connected components of size three:

• C = {0, si, si+1}. The only neighbour of si+1 in B that is not a neighbour of
{0, si} is vi+1 (Figure 4.15a). Thus, δ0B = 3/8.

Walks, Transitions and Geometric Distances in Graphs. 119

4.3. Parallelohedron norms in the plane

(a) The set C = {0, si} has six strict
neighbours in B.

(b) The set C = {si, si+1} has four strict
neighbours in B.

Figure 4.14: The two possible types of connected component of size 2 and their
neighbours in B.

• C = {0, si,−si}. The only neighbour of −si in B that is not a neighbour of
{0, si} is −vi (Figure 4.15b). Thus, δ0B = 3/8.

(a) The set C = {0, si, si+1} has six strict
neighbours in B.

(b) The set C = {0, si,−si} has six strict
neighbours in B.

Figure 4.15: The two possible types of connected component of size 3 and their
neighbours in B.

Applying Lemma 4.20, one can check that we have enumerated all the possible
kinds of connected components of G̃[U].

Putting everything together, we can complete the proof of Theorem 4.19:

Let U ⊂ V avoiding polytope distance 1. We define δB(U) = lim sup
R→∞

|U ∩ VR|
|B ∩ VR|

where

as usual, VR = V ∩ [−R,R]n. Hence, we have:

δGP
(U) = δB(U)× δGP

(B).

Since V = A∪B and B is twice as dense as A in GP , we find δGP
(U) = 2

3δB(U).
From Lemma 4.21, we know that δB(U) 6 sup

C cc of G̃[U]

δ0B(C). Then Lemma 4.22

shows that

δB(U) 6
3

8
and we get

δGP
(U) 6

2

3
× 3

8
=

1

4
.

120 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

Proposition 4.14 and Theorem 4.19 cover every parallelohedron in dimension 2.
This proves that Conjecture 4.6 holds for n = 2.

Theorem 4.23.
If ‖ · ‖ is a norm such that the unit ball tiles R2 by translation, then

m1(R
2, ‖ · ‖) = 1

4
.

4.4 The norms associated with the Voronöı regions of

the lattices An and Dn

4.4.1 The lattice An

Here, we consider the lattice An (see Example 1.52) for n > 2. We recall that
An = Zn+1∩H, whereH is the hyperplane of Rn+1 defined byH = {(x1, . . . , xn+1) ∈
Rn+1 :

∑n+1
i=1 xi = 0}. We prove that:

Theorem 4.24.
For every dimension n > 2, if P is the Voronöı region of the lattice An, then

m1(R
n, ‖ · ‖P) =

1

2n
.

Proof. For n = 2, the Voronöı region of A2 is actually the regular hexagon (see
Figure 1.21b). We are going to generalize to all dimensions n > 2 the strategy that
we used in subsection 4.3.1.

The Voronöı region P of An is described extensively in Chapter 21, Section 3 of
[28]. We give a brief overview of the results that are relevant in this subsection.

We denote by pH the orthogonal projection on H. Here, H⊥ = R(1, . . . , 1) and

thus, pH(u1, u2, . . . , un+1) = (u1−ũ, u2−ũ, . . . , un+1−ũ) where ũ =
u1 + · · · + un+1

n+ 1
.

The norm on H associated to the Voronöı cell of An is defined by ‖x‖P =
maxi,j(xi − xj). Hence, the border of P consists of the points (x1, . . . , xn+1) of
H such that max xi − minxi = 1 and the vertices of P are the points H whose
coordinates take exactly two different values a and b with a − b = 1. Hence, we
find that the vertices VP of P are exactly the pH(u) with u ∈ V0 where V0 =
{0, 1}n+1 \ {(0, . . . , 0), (1, . . . , 1)} (with the notation introduced previously, we have
ũ = b).

Note that for all vertex u = (u1, . . . , un+1) ∈ Rn+1,

max
i,j

(ui − uj) = max
i,j

((ui − ũ)− (uj − ũ)) = ‖pH(u)‖P . (4)

We consider a tiling by translation of Rn by the polytope 1
2P. Let S be the set of

vertices generated by 1
2VP (S consists of the vertices and centers of the polytopes of

the tiling) and let GP be the subgraph of G(Rn, ‖ · ‖P) induced by S. The auxiliary
graph G̃ has the same vertex set as GP and two vertices u and v are adjacent in G̃ if
and only if u−v ∈ 1

2VP (G̃ is the Cayley graph on VP associated with the generating
set 1

2VP). These graphs generalize the graphs that we considered in subsection 4.3.1.

We first show that G̃ satisfies the same remarkable property:

Walks, Transitions and Geometric Distances in Graphs. 121

4.4. The norms induced by the Voronöı cells of An and Dn

Lemma 4.25. The graph G̃ satisfies (Property D):

d̃(u1, u2) = 2 ⇒ ‖u1 − u2‖P = 1.

Proof. We may assume x = 0. A vertex at graph distance 2 from 0 can be written
v + v′ with v and v′ in 1

2VP . Thus, we need to show that, for v, v′ ∈ 1
2VP , either

v+ v′ is not at graph distance 2 from 0 (v+ v′ = 0 or v+ v′ ∈ 1
2VP) or ‖v+ v′‖P = 1

which comes down to saying that v + v′ ∈ VP .

Let u, u′ ∈ 1
2V0 be such that pH(u) = v and pH(u′) = v′. Hence, v + v′ =

pH(u+ u′).

We know that u + u′ ∈ {0, 12 , 1}n+1 and one of the four following situations
occurs:

Case I: all the coordinates of u+ u′ have the same value. Hence, v + v′ =
pH(u+ u′) = 0 and is not at graph distance 2 from 0.

Case II: the coordinates of u+ u′ consist only of 0’s and 1
2 ’s. The previous

characterization of VP states that pH(2(u+u′)) ∈ VP which means that v+v′ ∈ 1
2VP

and is therefore at graph distance 1 from 0.

Case III: the coordinates of u + u′ consist only of 1
2 ’s and 1’s. We write

u+ u′ as w+ 1
2(1, . . . , 1) where the coordinates of u+ u′ consist only of 0’s and 1

2 ’s.
We find that v + v′pH(u + u′) = pH(w) and we proved in the previous case that
w ∈ 1

2VP .

Case IV: both 0’s and 1’s appear in the coordinates of u+ u′. By (4), this
means that ‖v + v′‖ = ‖pH(u+ u′)‖ = 1− 0 = 1.

Because G̃ satisfies (Property D), G̃ also satisfies Lemma 4.17. We can now
proceed to analyze the cliques of G̃, and for each of them, determine its local density.
Since G̃ is vertex transitive, we only describe the cliques containing 0. For u ∈ V0,
we define its support I(u) = {i ∈ {1, . . . , n+ 1} : ui = 1}.

Lemma 4.26.

The cliques of G̃ containing 0 are the sets of the form
{

0, pH(u1)
2 , . . . , pH(us)

2

}

such that I(u1) (I(u2) (. . . (I(us).

In particular, since s 6 n, a clique cannot contain more than n+ 1 vertices.

Proof. Let C be a clique of G̃, and assume 0 ∈ C. Then the other elements of C
must belong to 1

2VP and since C is a clique, they must be adjacent in the graph. In

other words, if v
2 ,

v′

2 ∈ C, then v−v′

2 ∈ 1
2VP . Let v 6= v′ ∈ VP , and u, u′ ∈ V0 such

that v = pH(u) and v′ = pH(u′). For i ∈ {1, . . . , n+1}, the ith coordinate of u− u′

is: 





1 if i ∈ I(u) \ I(u′),
−1 if i ∈ I(u′) \ I(u),
0 otherwise.

122 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

If both 1 and −1 appear in the coordinates of u − u′, then ‖v − v′‖P = 2, and
v−v′

2 /∈ 1
2VP . By definition of V0 and since v 6= v′, the coordinates of u − u′ must

take two different values. Two cases remain: if u − u′ contains only 0’s and 1’s,
u− u′ ∈ V0 and v − v′ ∈ VP ; and if it contains only 0’s and −1’s, then we can write
u− u′ = w − (1, . . . , 1), with w ∈ V0, so that v − v′ ∈ VP as well.

Hence, v − v′ ∈ VP if and only if I(u) (I(u′) or I(u′) (I(u).

Lemma 4.27.

For every clique C of G̃, δ0(C) 6
1

2n
.

Proof. Let
{

0, pH (u1)
2 , . . . , pH(us)

2

}

be a clique. For each i ∈ [[1, s]], we set wi =

|I(ui)|. By symmetry, we may assume that for all i, ui = (1, . . . , 1
︸ ︷︷ ︸

wi

, 0, . . . , 0). We

set u0 = 0 and w0 = 0. We want to count the vertices in N [C] = 1
2({0, pH(u1), . . . ,

pH(us)}+ VP).

Since 0 ∈ C, the set ({0, pH(u1), . . . , pH(us)}+ VP) must contain all the images
of V0 ∪ {0} by pH : there are 2n+1 − 1 such vertices.

For each i = 1, . . . , s, we count how many new neighbours are provided by
pH(ui)+VP (i.e. neighbours of pH(ui)+VP that are not neighbours of pH(uj)+VP

for any j 6 i). We find that

• The vector u1 = (1, . . . , 1
︸ ︷︷ ︸

w1

, 0, . . . , 0), provides (2w1 − 1)(2n+1−w1 − 1) new neigh-

bours.

• The vector u2 = (1, . . . , 1
︸ ︷︷ ︸

w1

, 1, . . . , 1
︸ ︷︷ ︸

w2−w1

, 0, . . . , 0), provides

2w1(2w2−w1 − 1)(2n+1−w2 − 1) new neighbours.

• For any 2 6 i 6 s, the vector ui will provide 2
wi−1(2wi−wi−1 − 1)(2n+1−wi − 1)

new neighbours.

By summing all the values, we get:

|N [C]| = 2n+1 − 1 +
s∑

i=1

2wi−1(2wi−wi−1 − 1)(2n+1−wi − 1)

= (s + 1)2n+1 −
(

s∑

i=1

2n+1−(wi−wi−1) + 2ws

)

.

Since ws 6 n and for every i, (wi − wi−1) > 1, we have

2ws +
s∑

i=1

2n+1−(wi−wi−1) 6 (s+ 1)2n.

This implies that |N [C]| > (s+ 1)2n+1 − (s+ 1)2n = (s+ 1)2n.

Walks, Transitions and Geometric Distances in Graphs. 123

4.4. The norms induced by the Voronöı cells of An and Dn

Finally, the local density of C satisfies:

δ0(C) =
|C|

|N [C]| =
s+ 1

|N [C]| 6
1

2n
,

and we may note that this bound is sharp if and only if ws = n and for every i,
wi − wi−1 = 1, that is when C is a maximal clique of the form

{0, (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0, 0), (1, . . . , 1, 0)}.

We can now conclude the proof of Theorem 4.24. Indeed, following Lemma 4.27
and Lemma 4.17, we find that α(GP) 6

1
2n , which leads to Theorem 4.24 by Lemma

4.12.

4.4.2 The lattice Dn

We apply the same method as for An to another classical family of lattices: Dn (see
Example 1.52). We recall that Dn is defined by Dn = {x = (x1, . . . , xn) ∈ Zn :
∑n

i=0 xi = 0 mod 2}. Since the Voronöı cell of D2 is a square like the cell of Z2 (see
Figure 1.21) and the Voronöı cell of D3 is a rhombic dodecahedron like the cell of
A3, we assume in this subsection that n > 4.

The same construction as before provides again a graph that satisfies (Property D).
Unfortunately, the analysis of the neighbourhoods of the cliques does not lead to
the wanted 1

2n upper bound. Nevertheless, we can prove:

Theorem 4.28.
For every dimension n > 4, if P is the Voronöı region of the lattice Dn, then

m1(R
n, ‖ · ‖P) 6

1

(3/4)2n + n− 1
.

Proof. Let us describe the Voronöı region of Dn. Again we refer to [28] for further
details.

The norm on Rn associated to the Voronöı cell of Dn is defined by ‖x‖P =
maxi 6=j(|xi|+ |xj |). The vertices of P are of two different types:

• Type 1: P has 2n vertices of the form (0, . . . , 0,±1, 0, . . . , 0).

• Type 2: P has 2n vertices of the form (±1
2 ,±1

2 , . . . ,±1
2).

Once again, let S be the lattice generated by 1
2VP , let GP be the subgraph of

G(Rn, ‖ · ‖P) induced by S and let G̃ be the auxiliary graph whose vertex set is S
and such that u and v are adjacent in G̃ if and only if (u− v) ∈ 1

2VP . We show that
(Property D) holds again:

Lemma 4.29. The graph G̃ satisfies (Property D):

d̃(u1, u2) = 2 ⇒ ‖u1 − u2‖P = 1.

Proof. We use the same method as in the proof of Lemma 4.25. Let v, v′ ∈ 1
2VP .

We distinguish three cases depending on the type of v and v′:

124 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

• If both v and v′ are of type 1, v + v′ is either 0, or, up to permutation of the
coordinates, of the form (±1, 0, . . . , 0) or (±1

2 ,±1
2 , 0, . . . , 0), and by definition

of the norm, ‖v + v′‖P = 1.

• If both v and v′ are of type 2, the non zero coordinates of v + v′ are 1
2 or −1

2 .
If v + v′ 6= 0, then either it is a vertex of 1

2VP of type 1, or it has at least two
coordinates whose absolute values are equal to 1

2 , and so ‖v + v′‖P = 1.

• If v is of type 1 and v′ is of type 2, then v+ v′ is either a vertex of 1
2VP of type

2, or, up to a permutation of coordinates, of the form
(
±3

4 ,±1
4 , . . . ,±1

4

)
, and

‖v + v′‖P = 1.

It remains to analyze the neighbourhoods of the cliques of G̃. We first determine
the possible cliques of G̃. We may assume that they contain 0.

Lemma 4.30. Up to symmetry, a clique of G̃ containing 0 must be a subset of the
maximal clique

Cmax =
{

0,
v1
2
,
v2
2
,
v3
2

}

where







v1 = (0, . . . , 0, 1)

v2 =
(
1
2 ,

1
2 , . . . ,

1
2

)

v3 =
(
−1

2 ,
1
2 , . . . ,

1
2

)
.

Proof. Let v, v′ ∈ VP such that v−v′

2 ∈ 1
2VP . The conclusion follows from the

following facts:

• The vertices v and v′ cannot both be of type 1, because the difference of two
such vectors, is either 0 or has polytope norm 2.

• If v and v′ are both of type 2, then v and v′ must differ by only one coordinate,
otherwise ‖v − v′‖P = 2.

• If v is of type 1, say v = (0, · · · , 0, ±1
︸︷︷︸

i

, 0 · · · , 0), if v′ is of type 2 and v−v′

2 ∈

1
2VP , then the ith coordinate of v′ must have the same sign as the ith coordinate
of v.

We now analyze the local density of the cliques:

Lemma 4.31. For every clique of G̃, δ0(C) 6
1

(3/4)2n + n− 1
.

Proof. By enumerating the neighbours of every element in Cmax and by counting
the intersections of the different neighbourhoods, we find that:

• If C = {0}, δ0(C) = 1
1+2n+n

.

• If C =
{
0, v12

}
, then δ0(C) =

2

2n + 2n−1 + 4n
=

1

(3/4)2n + 2n
.

Note that for n > 6, this density is already greater than 1
2n .

Walks, Transitions and Geometric Distances in Graphs. 125

4.5. The chromatic number of G(Rn, ‖ · ‖P)

• If C is one of the two symmetric cliques
{
0, v22

}
and

{
0, v32

}
,

δ0(C) =
2

2× 2n + 2n
=

1

2n + n
.

• By symmetry, the cliques of the form
{
0, vi2 ,

vj
2

}
have the same number of

neighbours. If C is one of them, then

δ0(C) =
3

2× 2n + 2n−1 + 3n − 1
=

1

(5/6)2n + n− 1/3
,

which is also greater than 1
2n .

• Finally, δ0(Cmax) =
4

3× 2n + 4n− 4
=

1

(3/4)2n + n− 1
, which is the highest

possible value of δ0(C).

Like in Subsection 4.4.1, Lemma 4.29, 4.17 and 4.31 lead to Theorem 4.28.

4.5 The chromatic number of G(Rn, ‖ · ‖P)
In this section, we discuss the chromatic number χ(Rn, ‖ · ‖P) of the unit distance
graph associated with a parallelohedron. We start with the construction of a natural
colouring of Rn with 2n colours, leading to:

Proposition 4.32. Let P be a parallelohedron in Rn. Then χ(Rn, ‖ · ‖P) 6 2n.

Proof. By definition of parallelohedra, there exists a lattice Λ such that Rn is the
union of the (λ+ P) for λ ∈ Λ, where only the borders of the λ+ P may intersect.
It is well known that one can define P ′ as the union of the interior of P and an
appropriately chosen subset of its border so that Rn is the disjoint union ∪λ∈Λ(λ+

P ′). We may also write Rn as the disjoint union Rn =
⋃

λ∈ 1
2
Λ

(

λ+
1

2
P
)

.

IfH is a coset of

(
1

2
Λ

)/

Λ, then AH =
⋃

λ∈H

BP

(

λ,
1

2

)

is a set avoiding distance

1. Hence, the points in AH can receive the same colour. This concludes the proof
since Rn is the disjoint union of all AH where H runs through the 2n cosets.

Example 4.33.
Let P be a Voronöı hexagon (the most general 2-dimensional parallelohedron).

We call its vertices vi with i ∈ [[0, 5]] such that vi and v(i+1) mod 6 are adjacent. One
can write R2 as the disjoint union of translates of P ′ where P ′ is the union of the
interior of the P, the interior of the edges v0v1, v1v2 and v2v3 and the vertices v1
and v2. This tiling leads to the colouring of the plane depicted in Figure 4.17.

In order to lower bound χ(Rn, ‖ · ‖P), we can take advantage of the induced
subgraphs that we have constructed in previous sections. In particular, whenever

126 Thomas Bellitto

4. Density of sets avoiding parallelohedron distance 1

Figure 4.16: A 4-colouring of the plane with the norm induced by a Voronöı hexagon.

we have a discrete induced subgraph GP of G(Rn, ‖ · ‖P) satisfying α(GP) =
1
2n , we

obtain as an immediate consequence that

χ(Rn, ‖ · ‖P) > χ(GP) >
1

α(GP)
= 2n.

Thus we have proved:

Corollary 4.34. If P is a parallelohedron in R2, then χ(R2, ‖ · ‖P) = 4.

Corollary 4.35. If P is the Voronöı region of the lattice An in Rn, then
χ(Rn, ‖ · ‖P) = 2n.

Finally, we would like to point out that in dimension 2, one can find a finite
induced subgraph of G(Rn, ‖·‖P) with chromatic number 4. Such a graph is depicted
in Figure 4.17 for the norm induced by a Voronöı hexagon.

(a) We start from the graph GP we built
in Subsection 4.3.2 and only consider the
set of vertices circled in the figure.

(b) The subgraph of G(Rn, ‖ · ‖P) that this
vertex set induces is 4-chromatic.

Figure 4.17

4.6 Conclusion

This chapter studies the density of sets of points avoiding distance 1 for distances in-
duced by several families of parallelohedra. Our approach based on the discretization

Walks, Transitions and Geometric Distances in Graphs. 127

4.6. Conclusion

lemma (Lemma 4.12) involves bounding the independence ratio of infinite discrete
graphs (Definition 4.7), which we were able to do in several cases thanks to spe-
cific properties of the auxiliary graphs we created ((Property D)). We proved the
conjecture of Bachoc-Robins (Conjecture 4.6) for several families of parallelohedra,
including all the parallelohedra in dimension 2 but also a family of parallelohedra of
unbounded dimension (Theorem 4.24) and we were able to establish bounds of the
order O(1

2n) in other cases (Theorem 4.28). Extending our results to more families
of parallelohedra and especially those of dimension 3 is an important goal of our
further work. A new approach based on discrete distribution function is developed
by Moustrou in chapter 4 of his thesis [92] and Chapter 5 of this thesis presents an
approach based on finite weighted graphs.

128 Thomas Bellitto

Chapter 5

Optimal weighted independence
ratio

This chapter presents a new method to find bounds on m1(R
n, ‖·‖P), which is at the

core of two ongoing projects: the first one with Christine Bachoc, Philippe Moustrou
and Arnaud Pêcher on norms induced by parallelohedra in dimension higher than 2
and the second one on the Euclidean plane with Arnaud Pêcher and Antoine Sedillot.
The results will be presented at ISMP 2018 and ICGT 2018 [11] [4].

Contents

5.1 Introduction . 129

5.2 Our approach . 130

5.3 General norms . 136

5.4 Parallelohedron norms . 143

5.5 Conclusion . 155

5.1 Introduction

This chapter presents ongoing work on an alternative approach to find upper bounds
on m1(R

n, ‖ · ‖P), based on the notion of optimal weighted independence ratio. We
present alternative proofs of results we obtained in Chapter 4 and new bounds for the
Euclidean norm and the norm induced by the regular truncated octahedron. This
polytope is especially interesting to us because it is the only regular parallelohedron
in dimension 3 (see Subsection 1.4.4 for the classification of 3-dimensional paral-
lelohedra) for which the Bachoc-Robins conjecture is still open; indeed, the cube is
addressed by Proposition 4.14, the rhombic dodecahedron, by Theorem 4.24, and
solutions for the hexagonal prism and the elongated dodecahedron have then been
presented by Moustrou in Chapter 4 of [92].

As in Chapter 4, our approach uses a discretization lemma (Lemma 5.6 which is a
generalization of Lemma 4.12) and we bound the independence ratio of G(Rn, ‖ ·‖P)
by bounding the independence ratio of well-chosen subgraphs. In Chapter 4, we
built infinite discrete subgraphs G of G(Rn, ‖ · ‖P) and we were able to bound their
independence ratio thanks to (Property D) or similar properties (Lemma 4.20).

129

5.2. Our approach

However, given a discrete subgraph G of G(Rn, ‖ · ‖P), it is not always possible
to build an auxiliary graph G̃ that observes (Property D). This in an important
obstacle to a proof of the Bachoc-Robins conjecture (Conjecture 4.6) in higher di-
mensions.

For example, for all the regular polytopes we dealt with in Chapter 4 (Subsec-
tions 4.3.1, 4.4.1 and 4.4.2), it was possible to build an auxiliary graph that observes
(Property D) on the lattice generated by 1

2VP but we can see that this is no longer
true with the regular truncated octahedron. Let us use the coordinate system de-
scribed at the end of Subsection 1.4.4 to study the regular truncated octahedron,
which is the permutohedron of order 4 (Definition 1.60). Let our norm be such that
the vertices of the unit polytope are the points whose coordinate are a permuta-
tion of {−3,−1, 1, 3}. Hence, {1

2 ,
3
2 ,−3

2 ,−1
2} and

{
3
2 ,−3

2 ,
1
2 ,−1

2

}
are both vectors

of 1
2P but their sum, {2, 0,−1,−1} is neither 0, nor a vertex of 1

2P, nor a vertex
of P, which was impossible with the regular parallelohedron norms we had encoun-
tered so far. By adding {−3

2 ,−1
2 ,

3
2 ,

1
2} ∈ 1

2P to {2, 0,−1,−1}, we obtain the vector
{1
2 ,−1

2 ,
1
2 ,−1

2}, which is at geometric distance 1
4 of 0 but would be at graph distance

3 with our usual auxiliary graph structure.
Since we cannot compute the independence ratio of infinite graphs in the general

case, we only build finite subgraphs in this chapter but enhance their expressive
power by weighting their vertices. This helps us achieve results that we were only
able to achieve with infinite graphs in the unweighted case.

In Section 5.2, we define the notion of optimal weighted independence ratio,
that we study throughout this chapter. We present the connection it has with
the density of sets avoiding distance 1 but also with another well-known problem:
fractional colouring. Sections 5.3 and 5.4 studies the notion of optimal weighted
independence ratio in two different contexts: the case of a general norm in Section
5.3 and the case of a norm induced by a parallelohedron in Section 5.4. We study it
both from a combinatorial and an algorithmic perspectives and present the results
it provides. In the Euclidean plane, our current results include an improvement
of the best upper bound known on m1(R

2) (Theorem 5.13) and of the best lower
bound on the fractional chromatic number of the plane (Theorem 5.14). In Section
5.4, we improve the previous algorithm in the specific case of norms induced by
parallelohedra and use it to achieve the current best bound on m1(R

3, ‖ · ‖P) when
P is a regular parallelohedron (Theorem 5.24).

5.2 Our approach

5.2.1 Optimal weighted independence ratio

Before presenting our approach, we need a few standard definitions on weighted
graphs.

Definition 5.1. Weighted graph:
A weighted graph is a triplet (V,E,w) where (V,E) is a graph and w : V → R+

is a weight distribution or a weighting of the vertices. For v ∈ V , w(v) is called the

weight of the vertex v. The total weight of the graph is defined by w(G) =
∑

v∈V

w(v).

130 Thomas Bellitto

5. Optimal weighted independence ratio

The weight of a vertex set S is defined similarly as w(S) =
∑

v∈S

w(v).

Similarly to how we defined the vertex set of a graph as non-empty, we assume
that every graph has at least one vertex of non-zero weight. Hence, every graph has
strictly positive weight.

Definition 5.2. Weighted independence ratio:

The weighted independence number of a finite weighted graph Gw is noted α(Gw)
and is the maximum weight of an independent set in Gw. The weighted independence

ratio of a finite weighted graph Gw is α(Gw) =
α(Gw)

w(G)
.

Let (V,E) be a discrete induced subgraph of G(Rn, ‖ · ‖), let w be a weight
distribution on V and let Gw = (V,E,w). For A ⊂ V , we define the density of A in

Gw: δGw(A) = lim sup
R→∞

w(A ∩ VR)

w(VR)
where VR = V ∩ [−R,R]n. As in Definition 4.7,

we extend the definition of the independence ratio to discrete weighted graphs as
α(Gw) = sup

A independent set
δGw(A).

Note that all our definitions in weighted graphs generalize the definitions in
unweighted graphs, which are the specific case where every vertex has weight 1.

We are now ready to introduce the central notion of optimal weighted indepen-
dence ratio.

Definition 5.3. Optimal weighted independence ratio:

We define the optimal weighted independence ratio α∗(G) of an unweighted graph
G = (V,E) as the infimum over all weight distribution w on V of the independence
ratio of Gw = (V,E,w).

Let Gw = (V,E,w) be a weighted graph and let G = (V,E). If α∗(G) = α(Gw)
we say that w is an optimal weighting of G and that Gw is optimally weighted.

Note that the colour classes of a proper k-colouring of a graph G partition V (G)
into k independent sets. Since the sum of the weights of those k independent sets
in the total weight of G, at least one of them has weight w(G)

k
or more. Hence:

Proposition 5.4. For every graph G, α∗(G) > 1
χ(G) .

Example 5.5.

Consider the graph P3 depicted in Figure 5.1a. The set {v1, v3} is a maximum
independent set and has size 2, and its independence ratio is thus α(P3) = 2

3 .
However, if we set w(v1) = w(v3) = 1 and w(v2) = 2 (see Figure 5.1b), we find
that the two maximal independent sets on G ({v1, v3} and {v2}, which are also the
colour classes in an optimal proper colouring of G) have weight 2, which proves that
α∗(P3) 6

1
2 . We know by Proposition 5.4 that this bound is optimal: α∗(P3) =

1
2 .

v1 v2 v3

(a) The graph P3.

1 2 1

(b) A weighting of P3.

Walks, Transitions and Geometric Distances in Graphs. 131

5.2. Our approach

Note however that the bound provided by Property 5.4 is not always tight. For
example, α∗(C5) =

2
5 (reached by giving the same weight to all the vertices) while

χ(C5) = 3.

5.2.2 Weighted discretization lemma

The reason why we are interested in the optimal weighted independence ratio of a
graph is because it is at least as small as its independence ratio and still provides
bounds on m1(R

n, ‖ · ‖). The bound it provides is therefore better.

Lemma 5.6. Weighted discretization lemma:
Let G = (V,E) be a finite subgraph induced by G(Rn, ‖ · ‖). Then

m1(R
n, ‖ · ‖) 6 α∗(G).

Proof. Let G = (V,E), let w be a weighting of V and let Gw = (V,E,w). Let R > 0
be a real number, and let X ∈ [−R,R]n be chosen uniformly at random. Like in the
proof of Lemma 4.12, we have lim sup

R→∞
P(X ∈ S) = δ(S).

Let S ⊂ Rn be a set avoiding 1. We define the random variable N = w((X +
V) ∩ S). Thus, we have:

E

[
N

w(V)

]

=
1

w(V)
E

[
∑

v∈V

w(v) × 1{X+v∈S}

]

=
1

w(V)

∑

v∈V

w(v)× P(X ∈ S − v).

and for every v, we have lim sup
R→∞

P(X ∈ S − v) = δ(S − v) = δ(S). Thus, we find

E

[
N

w(V)

]

= δ(S)

∑

v∈V w(v)

w(V)
= δ(S).

Since (X + V) ∩ S is contained in S which is independent, it is independent too
and thus, N

w(V) 6 α(Gw).

This proves that for every weighting w, δ(S) 6 α(Gw) and thus δ(S) 6 α∗(G).

Hence, we can find bounds on m1(R
n, ‖·‖) by building a finite induced subgraph

G of G(Rn, ‖·‖) and computing or bounding its optimal weighted independence ratio
(we present an algorithm to compute it in Section 5.3).

Example 5.7.
Let P be the regular hexagon, and let G and G̃ be the graphs built in the proof

of Theorem 4.15. Let H and H̃ be their subgraphs induced by the vertices that are
contained within the unit polytope. Hence, H is still a subgraph of G(R2, ‖ ·‖P) and
H̃ (depicted in Figure 5.2a) has same vertex set and satisfies (Property D). Since
H is finite, its independence number is easy to compute and we do not need the
auxiliary graph. We use H̃ in the figures for its better readability.Recall that the

132 Thomas Bellitto

5. Optimal weighted independence ratio

(a) The graph H̃ .

5

2

2

22

2

2

1

2

1

2

121

2

1

2

1 2

(b) The graph H̃w.

Figure 5.2

independent sets in H are exactly the sets that do not contain two vertices at graph
distance 2 in H̃.

The graph H has independence number 6 and therefore provides a bound of
6
19 ≃ 0.3158 on m1(R

2, ‖ · ‖P). The two different maximum independent sets (up to
isomorphism) are depicted in Figure 5.3.

Figure 5.3: The maximum independent sets in H (in blue).

Let w be the weight distribution on V (H) depicted in Figure 5.2b and let Hw =
(V (H), E(H), w). The maximum weighted independent sets in Hw are depicted in
Figure 5.4 and have weight 9. This proves that α∗(H) 6 α(Hw) 6

9
35 ≃ 0.2571.

One can prove that the weighting w is optimal and α∗(H) = 9
35 . Here, even with

a weighting, the graph H is too small to reach the bound of 1
4 but the weighting still

allows to considerably improve the bound. Furthermore, we will see that the bound
of 1

4 can be reached with a finite weighted graph while we know no finite subgraph
of G(R2, ‖ · ‖P) that achieves an unweighted independence ratio of 1

4 .

5.2.3 Fractional chromatic number

Our notion of optimal weighted independence ratio is heavily related to the already
well-known notion of fractional chromatic number.

Definition 5.8. b-fold colouring, fractional chromatic number:
A b-fold colouring of a graph G = (V,E) is a function c that maps every vertex

of a the graph to a set of b colours such that for every uv ∈ E, c(u) ∩ c(v) = ∅.

Walks, Transitions and Geometric Distances in Graphs. 133

5.2. Our approach

5

2

2

22

2

2

1

2

1

2

121

2

1

2

1 2

5

2

2

22

2

2

1

2

1

2

121

2

1

2

1 2

5

2

2

22

2

2

1

2

1

2

121

2

1

2

1 2

5

2

2

22

2

2

1

2

1

2

121

2

1

2

1 2

Figure 5.4: The maximum independent sets in Hw (in blue).

A b-fold colouring that uses a different colours is called an a : b-colouring. If such
a colouring exists, G is a : b-colourable and if a is the smallest number for which
G is a : b-colourable, G is a : b-chromatic. In this case, we say that a is the b-fold
chromatic number of G, noted χb(G).

The fractional chromatic number χf (G) of a graph G is the smallest a
b
for which

G is a :b-chromatic: χf (G) = inf
b

χb(G)

b
.

One can also prove that χf (G) = lim
b→+∞

χb(G)

b
.

Note that traditional graph colouring is the case b = 1 of b-fold colouring, and
thus, for all graph G χf (G) 6 χ(G).

Since the colour classes in a proper colouring of a graph are independent, the
chromatic number of the graph is the smallest size of a partition of the vertices of a
graph into independent sets. If we are given the set S of the independent sets of a
graph, we can express its chromatic number by a linear program. For each I ∈ S ,
let xI be a binary variable that indicates whether I is a colour class of the optimal
colouring we create. Our program is:







minimize
∑

I∈S

xI subject to

∀v ∈ V,
∑

I∈S :v∈I

xI = 1

The constraints ensure that each vertex belongs to exactly one colour class and
the objective function is to use as few colours as possible.

134 Thomas Bellitto

5. Optimal weighted independence ratio

The fractional chromatic number can be expressed by the same program where
the xI do not have to be binary and can take any value between 0 and 1. Thus,
fractional graph colouring is the linear programming relaxation of graph colouring.
However, note that this does not provide an efficient algorithm to compute the
fractional chromatic number of a graph: indeed, the number of variables of the
above program is the number of independent sets in G, which is exponential in its
number of vertices. Hence, both the generation and the resolution of this program
takes a long time. The problem of fractional chromatic number is proved NP-hard
in [82].

Example 5.9.
As we know, χ(C5) = χ1(C5) = 3 (see Figure 5.5a). However, by giving two

colours to each vertex, we can find a 5:2-colouring of C5 (see Figure 5.5b), which
means that χf (C5) 6

5
2 . One can prove that this bound is actually tight.

a

b

cd

e

(a) An optimal 1-fold colouring of C5. (b) An optimal 2-fold colouring of C5.

Figure 5.5

With the notation of the above linear program, the solution depicted in Figure
5.5b is x{a} = x{b} = x{c} = x{d} = x{e} = 0 and x{a,c} = x{b,d} = x{c,e} = x{d,a} =

x{e,c} =
1
2 .

In [54], Godsil and Royle define a fractional clique as a weight distribution on
the vertices of the graph such that no independent set on the graph has weight
more than 1 (as is the case in a unweighted clique, where the maximum independent
sets are vertices and therefore have weight one). The weight of a fractional clique
is defined as the total weight of the graph under the weighting that the fractional
clique defines. The fractional clique number ωf of a graph is the maximum weight
of a fractional clique. For example, the distribution that gives weight 1

2 to all the
vertices of C5 is a maximum fractional clique of weight 5

2 .
It follows directly from the definition of fractional clique number that for every

graph G, ωf (G) =
1

α∗G
.

As explained in [54], the fractional clique number of a graph is given by the dual
of the linear program described above. By the strong duality theorem, we therefore
have ωf (G) = χf (G). The relation between fractional clique number and optimal
weighted independence ratio follows:

Proposition 5.10. For every graph G,

χf (G) =
1

α∗G
.

Walks, Transitions and Geometric Distances in Graphs. 135

5.3. General norms

Hence, our weighted discretization lemma (Lemma 5.6) connects the density of
sets avoiding distance 1 in a given space with its fractional chromatic number. The
chromatic number of the Euclidean plane has already been studied and the best
published lower bound, established by Cranston and Rabern in 2017 in [31], is

χf (R
2) >

76

21
> 3.61904.

The bound it provides on m1(R
2) is m1(R

2) 6 0.276316. In [42], Exoo and
Ismailescu claim to have a proof that χf (R

2) > 383
102 > 3.75491 in a yet unpublished

paper. This gives a bound on m1(R
2) of 0.266319. However, none of these bounds

are as good as the current best bound of 0.258795 by Keleti et al. [70]. Thus, our
approach also involves to improve the bound on χf (R

2).

5.3 General norms

This section details the implementation of our method and the results it provides
for the case of a general norm. We first focus on how to find an optimal weighting
of the vertices of a given graph and thus, how to determine its optimal weighted
independence ratio. For example, we are looking for an algorithm that would return
the weighting w depicted in Figure 5.2b when given the graph H in Figure 5.2a.
Subsection 5.3.1 presents notions that we use to design the algorithm in Subsection
5.3.2. Finally, Subsection 5.3.3 outlines how to build interesting graphs and presents
the results of our method in the Euclidean plane.

5.3.1 Preliminary study

While combinatorial bounds and the complexity of the fractional chromatic number
have been studied on a variety of classes of graphs, very few algorithms have yet
been developed to compute it.

The algorithm we design in this Section uses two linear programs. The first one
is used to find a weighting that minimizes the maximum weights of a collection of
independent sets.

Let G = (V,E), let V = {v1, . . . , vn} and let S1, . . . , Sk be independent sets of G.
For every vertex v, we create a variable wv that indicates the weight of v. Since the
independence ratio of a graph is left unchanged by the multiplication of the weight
of the vertices by a constant, we may set that the total weight of the graph is 1. We
create a variable M that indicates the maximum weight of a set Si.







minimize M
∑

v∈V

wv = 1

∀i ∈ [[1, k]],
∑

v∈Si

wv 6 M

The variables of this linear program do not have to be integers, which allows to
solve this program efficiently in practice. However, generating a suitable set S of

136 Thomas Bellitto

5. Optimal weighted independence ratio

independent sets S1, . . . , Sk takes much more time.
The relation between optimal weighted independence number and fractional

chromatic and clique numbers and the linear program we have presented in Sub-
section 5.2.3 suggest to run the above program on the entire set S of independent
sets of G. However, the time required to generate a set S is at least

∑

S∈S
|S|.

Since they are exponentially many, generating all the independent sets or even all
the maximal independent sets of a graph is only feasible on very small graphs. We
will thus look for smaller suitable sets S . Our criteria is that by minimizing the
weight of the maximum-weight set of S , we want to minimize the weight of the
maximum-weight independent set of the entire graph.

The first important observation we make is that there always exists an optimal
weighting of the graph such that all the vertices of a same orbit (see Definition 1.16)
have the same weight. Indeed, let Aut(G) be the set of automorphisms on a graph G.
The image of an independent set by an automorphism σ is still an independent set
and the composition of an optimal weighting w with σ is therefore still an optimal
weighting. One can prove that the average of the w ◦ σ for σ ∈ Aut(G) gives the
same weight to all the vertices of a same orbit and is still an optimal weighting.
We call a weighting that gives the same weight to all the vertices of a same orbit a
symmetric weighting .

Because of this observation, our problem is now to find a collection of independent
sets S = {S1, · · · , Sk} that contains a maximum-weight independent set under
any symmetric weighting w. In particular, if two sets are images of each other by
an automorphism, S only needs to contain at most one of them. Consider the
graph C6 depicted in Figure 5.6, where all the vertices belong to the same orbit O1.
The sets {v2, v5} and {v3, v6}, although maximal, are the images of {v1, v4} by an
automorphism. Thus, S only needs to contain at most one of them. Furthermore,
note that even if {v1, v4} is contained in no strictly bigger independent set than
itself, it only contains two vertices of O1 while the set {v1, v3, v5} contains three.
The set {v1, v3, v5} is therefore heavier than {v1, v4} for every symmetric weighting
of C6.

v6

v2 v3v1

v5 v4

Figure 5.6: The graph C6.

More generally, let G be a graph, let O1, . . . , Op be its orbits, let S be an inde-
pendent set of G and let ni be the number of vertices of Oi that S contains. If an
independent set S′ contains at least ni vertices of Oi for all i, then we know that S′

is heavier than S for every symmetric weighting w. This observation provides a new
partial order on the vertex set of a graph, which is consistent with the inclusion and
for which fewer pairs of sets are incomparable. Thus, there are fewer maximal sets.
For example, the only two maximal sets in C6 for this relation are {v1, v3, v5} and
{v2, v4, v6}, and by symmetry, we know that {v1, v3, v5} is maximal for any symmet-

Walks, Transitions and Geometric Distances in Graphs. 137

5.3. General norms

ric weighting of G. However, while it is easy to ensure that an independent set S is
strictly contained in no other (it comes down to checking whether S is dominating),
it is much harder to determine if S is maximal for our new order. Furthermore,
while being maximal for this order is necessary, it is still not sufficient to ensure
that there exists a symmetric weighting w for which S has maximum weight.

Indeed, consider the graph G depicted in Figure 5.7. It has two orbits that we
call A and B. Up to isomorphism, there are three maximal independent sets for the
previous partial order:
• sets that contain three vertices of A and no vertex of B, such as S1 = {a1, a2, a3};
• sets that contain no vertex of A and three vertices B, such as S2 = {b1, b3, b5};
• sets that contain one vertex of each orbit, such as S3 = {a1, b3}.

However, one can see that for every symmetric weighting w, w(S3) =
w(S1)+w(S2)

3
and the weight of S3 is therefore smaller than at least one of S1 and S2.

b1 b2

a2

b4

b3

a1

a3

b5 b6

Figure 5.7: A graph G. Its two orbits of vertices A and B are depicted in yellow
and green respectively.

The above examples suggest that determining if there exists a symmetrical
weighting w for which a given independent S has maximum weight is a difficult
task. On the other hand, it also suggests that such sets are much fewer than maximal
independent sets. Since the time-complexity of the above linear program depends
heavily on the size of S , the algorithms we present in the rest of this chapter try to
keep its size small.

5.3.2 The algorithm

Let G = (V,E) be a graph and let O1, . . . , Op be its orbits of vertices. We suppose
that we have a function named orbit that returns the number of the orbit of a given
vertex v. Our algorithm uses the two following linear programs.

The first one, that we call P1, is an improved version of the program presented
in the previous subsection, that takes the symmetry of the graph into account and
looks for symmetric weightings. Let S = {S1, . . . , Sk} be a collection of independent
sets and let ni,j = |Si∩Oj|. Our variables are the w1, . . . , wp where wj indicates the
weight of the vertices of Oj .

138 Thomas Bellitto

5. Optimal weighted independence ratio







minimize M
p
∑

j=1

wj |Oj | = 1

∀i ∈ [[1, k]],

p
∑

j=1

ni,jwj 6 M

(P1(S))

The second is an integer linear program close to the one presented in Example
1.76. It returns an independent set of maximum weight for a given symmetric weight-
ing w = (w1, . . . , wp) defined by the weight it gives to each orbit. For each vertex v,
we use a binary variable xv that indicates whether v belongs to the maximum-weight
independent set S we create.







maximize
∑

v∈V

worbit(v)xv

∀uv ∈ E, xu + xv 6 1

(P2(w))

Our algorithm is described in Algorithm 1.

Algorithm 1: Computing an optimal weighting of a graph G.

1 Let O1, . . . , Op be the orbits of vertices of G
2 Let S = {} and for all j ∈ [[1, p]], wj =

1
|V |

3 Let ub = 1 and lb = 0.
4 while ub 6= lb do
5 Let S be the independent set returned by (P2(w)).
6 S = S ∪ {S}.
7 ub = w(S)
8 Let w be the weighting returned by (P1(S)) and let lb be the objective

value.

9 return the wj and ub.

At each step of the algorithm, ub is an upper bound on α∗(G) and lb is a
lower bound. Indeed, after line 7, (P2(w)) ensures that for any symmetric weight
distribution w, there exists an independent set in S whose weight is at least ub.
Furthermore, after line 8, (P1(S)) ensures that there exists a weighting (namely,
w) that reaches the independence ratio of lb.

At each iteration of the while loop except the last one, our algorithm returns
an independent set S for which there exists a symmetric weight distribution such
that S is strictly heavier than every set of S . The last iteration happens when our
set S contains a maximum-weight independent set for every symmetric weighting.
However, there might exist smaller such sets S than the one our algorithm returns.
Indeed, as long as there exists an orbit Oj such that no set of S contains a vertex
of Oj , (P1(S)) can return a weighting where every set of S has weight 0 by giving
weight 0 to all the orbits in S . Then, if an orbit has weight 0, the set S returned
by (P2(w)) may not be maximal: for example, if a graph contains two obrits O1 and

Walks, Transitions and Geometric Distances in Graphs. 139

5.3. General norms

O2 but w2 = 0, then (P2(w)) may return a set that contains two vertices of O1 and
no vertex of O2 even if there exist independent sets that contain two vertices of O1

and one of O2. This problem can be avoided by adding the constraint wj > ε in
(P1(S)), at least during the first few iterations of the while loop.

At the end of the execution of the algorithm, the wj describes an optimal weight-
ing and lb = ub = α∗(G).

The running time of our algorithm is hard to analyze because of the difference
between the theoretical and the practical running times of linear programs (see
Section 1.6 for a discussion of the efficiency of linear programs). Determining the
orbits of a graph is a difficult problem in the general case but is easy on the geometric
graphs that we study in this chapter and can even be done by hand on most of
them. The running time of (P1(S)) is also much smaller than the running time
of (P2(w)). Thus, the total running time of the algorithm comes from the running
time of (P2(w)) and the number of iterations of the while loop (which is equal to
the size of the final set S). On the geometric graphs that we study in this chapter,
the size of the set S seems to be empirically linear in the number of orbits of the
graph. The theoretical bounds in the general case are most likely much worse and
would surely be interesting to study. The running time of (P2(w)) is exponential in
|V | but also depends strongly on the symmetry and the independence ratio of the
graph. In practice, we are able to handle graphs up to around 600 vertices. Note
that even if we are given an optimal weighting of the graph, P2 is the fastest way
we know in the general case to compute the associated independence ratio. Since
this problem is NP-complete, we have little hope to find an algorithm that would
allow to compute the optimal weighted independence ratio of much bigger graphs
than the ones we are currently able to handle.

When running a linear program on a big graph, an important limiting factor is
also the memory that the solvers require. However, the size limit for our algorithm
to compute the optimal weighted independence ratio is the same as the size limit for
simply computing the unweighted independence ratio of a graph with P2 and the
bound provided with by the optimal weighted independence ratio is at least as good
and often significantly better than the unweighted independence ratio.

Finally, note that even if the computation is interrupted before completion (be-
cause of a too high time- or space-complexity), the values of ub obtained at each
iteration of the while loop still provide upper bounds on α∗(G) and therefore on
m1(R

n, ‖ · ‖).

5.3.3 The Euclidean plane

We now show how to use Algorithm 1 to find bounds on m1(R
n, ‖·, ‖) in the case of

a general norm (we make no assumption on whether the unit ball tiles the plane).
We then use the method we develop to study the density of sets avoiding distance 1
in the Euclidean plane.

As we said previously, for a given norm ‖ · ‖, our approach consists of deduc-
ing upper bounds on m1(R

n, ‖ · ‖) from the optimal weighted independence ratio
of finite subgraphs of G(Rn, ‖ · ‖). How to build interesting graphs will be dis-
cussed extensively in the rest of this chapter. In the literature on m1(R

n) or on

140 Thomas Bellitto

5. Optimal weighted independence ratio

the Hadwiger-Nelson problem, one can already find many interesting subgraphs of
G(Rn, ‖ · ‖) (especially in the Euclidean plane) that have been designed to optimize
criteria that are close to ours (namely, the unweighted independence ratio or the
chromatic number). Before going into details on how to build relevant graphs, we
would like to point out how our weighted approach makes this problem easier. An
important advantage of our method that we have not explicitly mentioned yet comes
from the following property:

Proposition 5.11. If G = (V,E) is a graph and H is an induced subgraph of G,
then α∗(G) 6 α∗(H).

Proof. Let wH be an optimal weighting of the vertices of H. Let wG be a weighting
of V such that wG(v) = wH(v) if v ∈ V (H) and wG(v) = 0 otherwise and let
Gw = (V,E,wG). Then, α

∗(G) 6 α(Gw) = α∗(H).

This means that by computing the optimal weighted independence ratio of a
given subgraph G of G(Rn, ‖ · ‖), we find a better bound than the ones that any
subgraph of G would provide.

Note that this property does not hold with the unweighted independence ratio,
which leaves us with many more graphs to study. For example, α(P3) =

2
3 >

1
2 =

α(P2). Of course, while the unweighted independence ratio of the subgraphs H of
G can provide a better bound than α(G), they cannot provide better bounds that
α∗(G) since α∗(G) 6 α∗(H) 6 α(H).

A good way to build graphs with small independence ratio (weighted or not)
is to arrange copies of smaller graphs in such a way that the optimal independent
sets of each copies are not compatible with each other. For example, the graph G
depicted in Figure 5.8a is 3-chromatic but v1 and v4 must have the same colour in a
3-colouring of G. It also has unweighted independence ratio 1

2 but its only optimal
independent set is {v1, v4}. The Moser spindle (Figure 5.8b), which is the smallest
4-chromatic subgraph of G(R2), contains two copies of G (whose edges are depicted
in red and blue respectively) combined in such a way that there is at least one of
them in which v1 and v4 do not have the same colour. Its chromatic number is
therefore 4 and its unweighted independence ratio is 2

7 . Similar processes have also
been used repeatedly by de Grey in [34] in order to build a 5-chromatic subgraph of
G(R2).

This process is harder to illustrate in the weighted case. Indeed, if a graph is
optimally weighted, then for every vertex v of degree at least 1, there exists an
optimal independent set that contains v (otherwise, we could make the weighted
independence ratio of the graph decrease by increasing the weight of v, which is
impossible) and one that does not (since there exists an optimal independent set
that contains its neighbour). However, given an optimally-weighted graph G, what
we can still do is look for pairs of vertices (u, v) such that every maximum-weight
independent set that contains u also contains v. We then rotate G around u until
the vertex v of the new copy of G is at distance 1 of the vertex v of the original
graph G (this process is illustrated in Figures 5.8a and 5.8b with u = v1 and v = v4).
This process can then be iterated on the new graph we obtain.

Walks, Transitions and Geometric Distances in Graphs. 141

5.3. General norms

v2 v3

v4

v1

(a) A graph G.
(b) The Moser spindle, built from two copies
of G whose vertices v4 are at distance 1.

Figure 5.8

By Proposition 5.11, we know that adding vertices to a graph can only decrease
its optimal weighted independence ratio. However, we are limited by our compu-
tation power and can only handle graphs up to a certain size. When building a
subgraph G of G(Rn‖ · ‖), it is therefore important to determine which vertices are
the most useful to decrease α∗(G). The weights of the vertices in an optimal weight-
ing gives a bound on the impact that the removal of a vertex can have on the optimal
weighted independence ratio of the graph.

Proposition 5.12.
Let G = (V,E) be a graph, let e > 0, let w be an optimal weighting of the vertices

of G and let V ′ ⊂ V be such that w(V ′)
w(V) 6 e. Then,

1− e

1
α∗(G \ V ′) 6 α∗(G).

Proof. Since every independent set of G\{V ′} is independent in G, α(Gw \{V ′}) 6
α(Gw). Hence

α∗(G \ V ′) 6 α(Gw \ {V ′}) = α(Gw \ {V ′})
w(V)− w(V ′)

6
α(Gw)

w(V)
=

w(V)

w(V)− w(V ′)

α(Gw)

w(V)
=

1

1− e
α∗(G)

Hence, when we reach the limit of our computation power, we can remove the
vertices of lowest weight and try to replace them by more useful vertices, for example
by combining our new graph with a copy of itself or of a smaller graph.

Our current best bound on m1(R
2) has surpassed the former best bound of

0.258795 by Keleti et al. [70]. It is interesting to note that the authors concluded
their paper by saying that better bounds could probably be achieved by their meth-
ods but that they did not think it would allow to get below 0.257 which we did with
ours.

Theorem 5.13.
m1(R

2) 6 0.256828

142 Thomas Bellitto

5. Optimal weighted independence ratio

Proof. A subgraph G of G(R2) that achieves α∗(G) 6 0.256828 is described in Ap-
pendix A.

A lower bound on the fractional chromatic number of the plane follows, that
improves the previous best bounds of 3.61904 by Cranston and Rabern [31] and of
3.75491 by Exoo and Ismailescu.

Theorem 5.14.

χf (R
2) > 3.89366.

5.4 Parallelohedron norms

In this section, we study the specific case of norms induced by parallelohedra and
how to compute the optimal weighted independence ratio of the associated geometric
graphs.

5.4.1 Λ-classes and k-regularity

Let P be a parallelohedron in Rn, let Λ be the lattice associated to a face-to-face
tiling by translation of Rn by P and let G = (V,E) be a finite induced subgraph of
G(Rn, ‖ · ‖P). We know that Λ + 1

2 P̊ (where P̊ denotes the interior of P) is a set
avoiding distance 1 of density 1

2n (see Figure 4.5). Thus, by the proof of Lemma 5.6,

we know that for any weighting w of G, there exists k ∈ Rn such that V ∩(k+Λ+ 1
2 P̊)

has a weight of at least w(G)
2n .

To build a graph G of optimal weighted independence ratio 1
2n , we proceed in

two steps:
• we first ensure that all the sets of the form V ∩ (k+Λ+ 1

2 P̊) have weight at most
w(G)
2n ;

• then, we ensure that no other independent set has a higher weight than the sets
of the form V ∩ (k + Λ+ 1

2 P̊).

We start by studying the vertex sets of the form V ∩ (k + Λ+ 1
2 P̊).

Definition 5.15. Λ-equivalence, Λ-classes:

We define the relation ∼Λ on Rn as follows: for u and v in V , u ∼Λ v if and
only if u − v ∈ Λ. Since Λ is a lattice, it is closed under addition. Thus, ∼Λ is
transitive and is therefore an equivalence relation that we call Λ-equivalence. We
call the equivalence classes of a vertex set V under this relation the Λ-classes.

Example 5.16.

Let P be the regular hexagon, let Λ be the lattice associated with a tiling of the
plane by P (here, Λ = A2, see Example 1.52) and let G and G̃ be the graph we
built in the proof of Theorem 4.15. Let H and H̃ be their subgraph induced by the
set V of vertices that are contained within the unit polytope. Like, in Example 5.7,
we are only interested in the independent sets in H but since H̃ is easier to read,
we depict H̃ in the figures (the independent sets in H being the set of vertices that
avoid distance 2 in H̃).

Walks, Transitions and Geometric Distances in Graphs. 143

5.4. Parallelohedron norms

We label the vertices of V as depicted in Figure 5.9. There are 12 Λ-classes in
G, which all have at least one elements in the unit polytope, as illustrated in Figure
5.10. We label them c1, . . . , c12. To make the vectors of Λ more apparent, we depict
the Λ-classes on a bigger vertex set in Figure 5.11.

v1

v3

v4

v5v6

v7

v2

v9

v10

v11

v12

v13v14v15

v16

v17

v18

v19 v8

Figure 5.9: The graph H̃.

c1

c3

c4

c5c6

c7

c2

c9

c10

c11

c12

c9c8c11

c10

c9

c12

c11 c8

Figure 5.10: The Λ-classes in V .

Figure 5.11: The Λ-classes in G.

c1

c8

c10

c12

c9

c4

c2

c6

c11

c7

c5

c3

Figure 5.12: Incompatibility between the Λ-
classes of G.

Definition 5.17. Compatibility:

We say that two Λ-classes c1 and c2 are compatible if and only if ∀u ∈ c1,∀v ∈
c2, uv /∈ E.

Example 5.18.

The Λ-classes c6 and c9 (see Figures 5.9 and 5.10) are incompatible because
v6 ∈ c6, v13 ∈ c9 and v6 and v13 are at distance 1.

The Λ-classes c2 and c11 are compatible.

Since a set of the form (k+Λ+ 1
2 P̊) is left unchanged by translation by a vector

of Λ, if S = V ∩ (k + Λ + 1
2 P̊) contains a vertex u, it also contains every vertex v

144 Thomas Bellitto

5. Optimal weighted independence ratio

of the Λ-class of u. Hence, if S is independent, it can only contains two vertices if
they are from compatible Λ-classes.

Proposition 5.19. If an independent vertex set S can be written under the form
V ∩ (k + Λ+ 1

2 P̊), then S is a union of compatible Λ-classes.

Let us investigate the possible unions of compatible classes in our graph G.
They are exactly the independent sets in the incompatibility graph of the Λ-classes
of G depicted in Figure 5.12. Since the graph can be partitioned into three cliques
({c1, c8, c10, c12}, {c9, c4, c2, c6}, {c11, c7, c5, c3}), no independent set has size greater
than 3. An independent set of the form V ∩ (k + Λ + 1

2 P̊) is therefore the union of
at most three Λ-classes. This means that if all the Λ-classes have the same weight,
the sets of the form V ∩ (k+Λ+ 1

2 P̊) will have weight at most 3
12 = 1

4 , which is our
goal.

The graph H has four orbits which are depicted in Figure 5.13. Since no Λ-class
of H contains vertices of two different orbits (see Figure 5.10), the weighting w
depicted in Figure 5.14 is the only symmetric weighting of H (up to multiplication
by a constant) where all the Λ-classes have same weight.

v1

v3

v4

v5v6

v7

v2

v9

v10

v11

v12

v13v14v15

v16

v17

v18

v19 v8

Figure 5.13: The orbits of H.

6

6

6

66

6

6

2

3

2

3

232

3

2

3

2 3

Figure 5.14: The weighting w.

We have now ensured that all the independent sets of the form V ∩(k+Λ+ 1
2 P̊) in

Hw have weight at most 18 (= w(H)
4 since the graph has total weight 72). However,

there are independent sets of weight up to 20 in Hw, one such example is depicted
in Figure 5.15.

Taking a closer look at this independent set, we realize that it contains entirely
the Λ-classes c5, c6 and c8 but also contains the vertex v19 ∈ c11 while c11 and c5 are
compatible (for example, v5 and v15 are at geometric distance 1). Indeed, even if
c11 and c5 are incompatible, v19 ∈ c11 is at distance 1 of no vertex of c5 in H. This
is the reason why H does not achieve an optimal weighted independence ratio of 1

4 ,
as explained in Example 5.7. We address this problem by adding to H vertices of
c5 that are at geometric distance 1 of v19, as depicted in Figure 5.16. It remains to
choose the weight of the new vertices.

Since c5 and c11 are incompatible, we weight the vertices of our graph in such
a way that no independent set on c5 ∪ c11 is heavier than c5. Since {v5, v19} is
independent and w(v19) = 2 (which we cannot change because we have not added
any vertex in c11) we set w(v5) = 4. Thus, to preserve w(c5) = 6, we give a weight

Walks, Transitions and Geometric Distances in Graphs. 145

5.4. Parallelohedron norms

6

6

6

66

6

6

2

3

2

3

232

3

2

3

2 3

Figure 5.15: A maximum-weight
independent set in Hw (in blue).

1

1

4

2

2

2

Figure 5.16: Two vertices we have to add
to H. The colours denote the Λ-classes
c5 and c11.

of 1 to our two new vertices. The two new vertices form with v11 and v15 another
maximal independent set but it also has weight 6 = w(c5).

By iterating this process on every vertex of the orbit of v5, we build the weighted
graph depicted in Figure 5.17 whose weighted independence ratio is 1

4 . Hence, this
graph gives an alternative proof of Theorem 4.15, which states thatm1(R

2, ‖·‖P) = 1
4

if P is the regular hexagon.

6

4

4

44

4

4

2

3

2

3

232

3

2

3

2 3

1 1

1 1

1

1

1

1

1

1

1

1

Figure 5.17: A weighted subgraph of G of weighted independence ratio 1
4 .

Our objective is now to generalize the method we have used with the regular
hexagon to any parallelohedron norm. This requires first to describe more formally
what we have done so far. To this end, we introduce the notion of k-regularity of
an independent set:

Definition 5.20. k-regularity:

Let P be a n-dimensional parallelohedron, let Λ be a lattice associated to a tiling
of Rn by P and let G be a subgraph of G(Rn, ‖ · ‖P). An independent set S in G is
k-regular if and only if there exist k Λ-classes c1, . . . , ck in G such that:

146 Thomas Bellitto

5. Optimal weighted independence ratio

• for all i ∈ [[1, k]], S contains all the vertices of ci;

• for all i ∈ [[1, k]], S contains no vertex of any class incompatible with ci.

Example 5.21.

The independent set S depicted in Figure 5.15 contains all the vertices of c5, c6
and c8 but also contains a vertex of c11, which is incompatible with c5. It is therefore
only 2-regular.

The set S \ {v19} is 3-regular. The most regular independent sets are always
those of the form V ∩ (k + Λ+ 1

2 P̊).

Since the incompatibility graph of the Λ-classes of G has independence number
3 (see Figure 5.12), we know that a 3-regular independent set is the union of three
of the twelve Λ-classes of G and cannot contain any other vertex. By setting that
all the Λ-classes must have the same weight, we therefore ensure that no 3-regular
independent set has weight ratio greater than 1

4 . Note that this is not the only
way to do so: any optimal weighting of the graph depicted in Figure 5.12 indicates a
possible weighting of the Λ-classes such that no 3-regular independent set has weight
ratio greater than 1

4 .

Note that the sets S1 = c1 ∪ c2 ∪ c3, S2 = c4 ∪ c11 ∪ c12, S3 = c7 ∪ c9 ∪ c10 and
S4 = c5 ∪ c6 ∪ c8 are independent and form a partition of G. Therefore, for any
subgraph H of G of weighted independence ratio 1

4 , we must have w(S1) = w(S2) =

w(S3 = w(S4) =
w(H)

4 . The same goes for the sets S5 = c2∪c3∪c8, S6 = c1∪c5∪c6,
S7 = c4∪c10∪c11 and S8 = c7∪c9∪c12. Since w(S1) = w(S5), we find w(c1) = w(c8).
Similarly, we find w(c1) = w(c8) = w(c10) = w(c12), w(c2) = w(c4) = w(c6) = w(c9)
and w(c3) = w(c5) = w(c7) = w(c11) (see Figure 5.18). This condition is equivalent
to the fact that no 3-regular independent set ofH has weight ratio greater than 1

4 and
is weaker than our previous condition (all the Λ-classes must have the same weight).
Figure 5.19 depicts a weighted subgraph of G(R2, ‖ · ‖P) of weighted independence
ratio 1

4 where all the Λ-classes do not have the same weight.

However, weighted graphs that satisfy this property can still admit 2-regular
independent set of weight ratio greater than 1

4 , as we saw in Figure 5.15. We avoid
this problem by asking that for every incompatible Λ-classes c and c′, no independent
set on c ∪ c′ has weight greater than w(c). We will see why this worked in the case
of the regular hexagon but we will also see that this condition is neither necessary
(Example 5.22) nor sufficient (Example 5.23) in the general case.

Example 5.22.

In the weighted graph depicted in Figure 5.19, the classes c1 and c11 are not
compatible and c11 is an independent set on c1 ∪ c11 of weight 6 > w(c1) = 2.
However, this does not help build independent sets of weight ratio greater than
1
4 because every union of three compatible Λ-classes that contains c1 also contains
another class that is not compatible with c11 and that makes it impossible to replace
c1 by an independent set on c1 ∪ c11 of weight greater than w(c1). Note that in the
graph depicted in Figure 5.14, both the sets c6 ∪ c8 ∪ c5 and c6 ∪ c8 ∪ c11 were
independent and had weight ratio 1

4 and this is why we could replace c5 by any
independent set of c5 ∪ c11.

Walks, Transitions and Geometric Distances in Graphs. 147

5.4. Parallelohedron norms

Figure 5.18: The lattice generated
by the 1

2P can be partitioned into
three cosets as depicted here. Only
the Λ-classes within a same coset
must have the same weight.

2

4

4

44

4

4

2

1

2

1

212

1

2

1

2 1

1 1

1 1

1

1

1

1

1

1

1

1

Figure 5.19: Here, all the Λ-classes
within the coset depicted in blue in Fig-
ure 5.18 have weight 2 while the other
have weight 6 but the graph still has a
weighted independence ratio of 1

4 .

Example 5.23.

Let P ′ be an irregular Voronöı hexagon and let G′ and G̃′ be the graph we built
in the proof of Theorem 4.19. The auxiliary graph G̃′ has the same combinatorial
structure than in the case of a regular hexagon but (Property D) does not hold
anymore. We recall (Lemma 4.20) that the vertices of the graph can be partitioned
into two sets A and B and that two vertices are at distance 1 from each other if
there are at distance 2 in G̃′ and have a common neighbour in B. In Figure 5.20,
vertices of A are depicted by squares and vertices of B are depicted by circles.
Thus, the compatibility graph between the Λ-classes of G′ can be obtained from the
compatibility graph of G (Figure 5.12) by removing the edges c9c11, c4c7, c2c5 and
c6c3. This graph still has independence number 3.

In the weighted subgraph of G′ depicted in Figure 5.20 (which is the analogous of
the graph we built in Figure 5.17), the Λ-classes all have same weight and for any two
incompatible classes c and c′, there is no independent set on c∪ c′ of weight greater
than w(c). However, Figure 5.20 depicts a 2-regular independent set of weight ratio
greater than 1

4 .

The independent set S depicted in Figure 5.20 contains the entirety of c9 and c11
and contains vertices from the classes c8, c10 and c12, which are compatible with c9
and c11 but are pairwise incompatible. The classes c8, c10 and c12 all have weight 6
and their respective intersections with S all have weight 3. As one can notice, there
is no independent set on the union of two of these classes of weight greater than 6.
However, note that a 3-regular set can contain at most of one these three classes and
cannot contain any vertex from the other, which amounts to a weight of 6, while S
contains an independent set of c8 ∪ c10 ∪ c12 of weight 9. This is a problem because
the sets c9 ∪ c11 ∪ c8, c9 ∪ c11 ∪ c10 and c9 ∪ c11 ∪ c12 are all independent and we can
therefore replace c8 in the first one by any independent set on c8 ∪ c10 ∪ c12.

148 Thomas Bellitto

5. Optimal weighted independence ratio

1 1

1

1

1

1

11

1

1

1

1

6

2

2

2

2

2

2

4

4

4

4

4

4

33

3

3 3

3

Figure 5.20: The set depicted in blue is independent and has weight ratio 21
72 > 1

4 .

Thus, if the incompatibility graph of our Λ-class has independence number 3, the
condition on our weighting to ensure that no 2-regular independent set has weight
ratio greater than 1

4 :
• that no 3-regular independent set has weight ratio greater than 1

4 and
• that for all set of classes C = {c1, . . . , ck} such that there exist c and c′ such that
for all i, c ∪ c′ ∪ ci is independent, there is no independent set on the union of the
classes of C of weight greater than w(c1). We saw in Example 5.22 that not all pairs
of incompatible classes satisfy this condition and in Example 5.23 that in the case
of the irregular hexagon, this condition can be satisfied by sets C of size 3. In the
case of the regular hexagon, the only such sets C are the pairs of Λ-classes from the
same coset (see Figure 5.18).

At this point, we have found a weighting for which no 2-regular independent set
has weight ratio greater than 1

4 . We then look for 1- and for 0-regular independent
sets and find that their weight ratio is also upper bounded by 1

4 . Hence, we have
found an optimal weighting of G.

5.4.2 The algorithm

This subsection presents an algorithm for the optimal weighted independence ratio
(Algorithm 2) that uses the notion of k-regularity to improve Algorithm 1 in the
case of a norm induced by a general parallelohedron.

We replace the linear program (P2(w)) (which returns a maximum-weight inde-
pendent set for a given weighting) by the following program (P3(k,w)), which returns
a maximum-weight k-regular independent set for a given integer k and weighting w.

Let c1, . . . , cℓ be the Λ-classes of our graph. For each vertex v, we use a binary
variable xv that indicates whether v belongs to the maximum-weight independent set
S we create. For each Λ-class ci, we use a binary variable Ei that indicates whether
S contains a vertex of ci and a variable Ci that indicates whether S contains all the
vertices of ci and no vertex from a class incompatible with ci.

Walks, Transitions and Geometric Distances in Graphs. 149

5.4. Parallelohedron norms







maximize
∑

v∈V

worbit(v)xv

∀uv ∈ E, xu + xv 6 1

∀i ∈ [[1, ℓ]],∀u ∈ ci, Ei > xu

∀i, j ∈ [[1, ℓ]], if cj is incompatible with ci, Ci 6 1− Ej

∀i ∈ [[1, ℓ]],∀u ∈ ci, Ci 6 xu
ℓ∑

i=1

Ci > k

(P3(k,w))

The second line of the program ensures that S is independent, the third is the
definition of Ei, fourth and fifth are the definition of Ci, the sixth ensures that S is
k-regular and the objective function maximizes the weight of S.

Let k0 be the independence number of the incompatibility graph of the Λ-classes.
Hence, k0 is the greatest value such that there exist k0-regular independent sets. In
all the graphs we study, k0 = ℓ

2n where ℓ is the number of Λ-classes and n is the
dimension of our space. Like we did in Subsection 5.4.1, our algorithm consists of
minimizing the maximum weight of k-regular independent sets for k = k0 down to
0. For each value of k, we compute the optimal weighting with an algorithm similar
to Algorithm 1 (with (P3(k,w)) instead of (P2(w))) but we do not reset the set of
independent sets S when k decreases. Our algorithm is described in Algorithm 2.

Algorithm 2: Computing an optimal weighting of a geometric graph G for a
parallelohedron norm.

1 Let O1, . . . , Op be the orbits of vertices of G.
2 Let c1, . . . , cℓ be the Λ-classes of G.
3 Let S = {} and for all j ∈ [[1, p]], wj =

1
|V | . Let lb = 0.

4 for k = k0 down to 0 do
5 Let ub = 1.
6 while ub 6= lb do
7 Let S be the independent set returned by (P3(k,w)).
8 S = S ∪ {S}.
9 ub = w(S)

10 Let w be the weighting returned by (P1(S)) and let lb be the
objective value.

11 return the wj and ub.

At any step of the algorithm, lb and ub provide lower and upper bound on the
minimum over all weightings of the graph of the maximum weight ratio reached by
k-regular independent set. Since k-regular independent sets are just a specific case
of independent sets, this weight ratio is smaller than α∗(G). Hence, lb gives a lower
bound on α∗(G) at any step of the execution but ub only gives upper bounds on
α∗(G) when k = 0 and needs to be reset each time k decreases.

150 Thomas Bellitto

5. Optimal weighted independence ratio

Here again, the running time of the algorithm is lower bounded by the time it
takes to find a maximum-weight independent set on G for a given optimal weighting
w. Therefore, the maximal size of graph we can handle is not much higher than with
Algorithm 1. However, for a given graph, Algorithm 2 is still significantly faster than
Algorithm 1. Let us compare the two algorithms.

Algorithm 2 requires to compute the Λ-classes of the graph. However, this can
be done in linear time in O(n × ℓ) where n is the number of vertices of the graph
and ℓ the number of Λ-classes: for each new vertex u, for each Λ-class ci, we pick
an element v of ci and check whether u − v ∈ Λ; if it is the case, then u ∈ ci; if u
belongs to none of the ci, we create a new Λ-class.

Algorithm 2 creates a bigger set S than Algorithm 1 and therefore uses (P3(k,w))
more than Algorithm 1 uses (P2(w)). Indeed, we saw in Subsection 5.3.1 that Algo-
rithm 1 adds a vertex S to S only if there exists a symmetric weighting for which
S is maximum, while Algorithm 2 adding a set S only means that S is maximum
among the k-regular independent set for the current value of k. However, empiri-
cally, the difference between the sizes of S at the end of the two algorithms is never
really important. Furthermore, as k decreases, the set of k-regular independent sets
differs less and less from the sets of all independent sets. Thus, most of the useless
sets in S are added for big values of k. This brings us to the most important dif-
ference between the two algorithms: the running time of (P3(k,w)) is much higher
for the small values of k than for the large ones. Note that for k = 0, (P3(k,w)) has
to find an maximum independent set in a graph of size n while it only has to find
a maximum independent set in a graph of size l (the incompatibility graph between
the Λ-classes) for k = k0. The time required by (P3(k,w)) is only relevant for very
small values of k but the large majority of the sets in S are added for large values of
k. For example, we saw in Subsection 5.4.1 that in the case of the regular hexagon,
we had an optimal weighting after optimizing for k = 3 and k = 2 only. Thus,
Algorithm 2 would have added sets to S for k = 3 and k = 2 and would only have
needed one iteration of (P3(k,w)) for k = 1 and k = 0, to ensure that the current
weighting was already optimal. On the other hand, all the sets that Algorithm 1
adds to S are found by (P2(w)) which is the case k = 0 of (P3(k,w)).

Since Algorithm 2 creates a bigger set S than Algorithm 1, Algorithm 2 also re-
quires more iteration of (P1(S)) than Algorithm 1 but the running time of (P1(S))
appears to be negligible in relation to (P2(w)) and (P3(k,w)) for small values of k.

We would like to conclude this subsection by pointing out that when the graph
has optimal weighted independence ratio higher than 1

2n , the optimal weightings are
not necessarily optimal among the k-regular independent sets for large values of k.
For example, let H be the graph depicted in Figure 5.2a. The weighting depicted in
Figure 5.2b is optimal while the weighting depicted in Figure 5.14 is not but the first
one already has weight ratio strictly greater than 1

4 with 3-regular independent sets
while the latter does not. The purpose of optimizing the weighting for high values
of k in the first steps of the algorithm is not to directly optimize the weighting for
smaller values of k but to find quickly constraints (elements of S) that will help
us do so. This is also why we keep all the elements of S in memory and not the
intermediate values of w.

Walks, Transitions and Geometric Distances in Graphs. 151

5.4. Parallelohedron norms

5.4.3 Building finite graphs

In this subsection, we assume that we are given an infinite discrete graph G like the
graph we built in the proof of Theorem 4.15 and we want to build a finite subgraph
H of G with optimal weighted independence ratio as small as possible.

Proposition 5.11 indicates that in order to have a low optimal weighted indepen-
dence ratio, the graph H that we create should contain as many vertices as possible.
We assume in this subsection that we cannot compute the optimal weighted inde-
pendence ratio of a graph of more than a given number of vertices that we call n0

and we thus look for subgraph of G of size smaller than n0 and of small optimal
weighted independence ratio. We also assume that the graph G and n0 are such
that all the subgraphs H of n0 vertices have geometric diameter significantly bigger
than 1. To minimize the size of the independent sets, we want the graph to con-
tain as many edges as possible, which is done by picking vertices that are close to
each other. A method that works well in practice is to choose the set Vd0 of all the
vertices that are at geometric distance less than d0 from the origin, where d0 is the
highest value possible such that |Vd0 | 6 n0. For example, the graph H we considered
in Example 5.16 was induced by the set of vertices V1. Such graphs also have the
advantage of having several symmetries and thus, have few orbits compared to their
number of vertices. However, especially when the vertex set of G has high density
(i.e. many vertices in a small portion of space), there are cases where removing an
orbit from H and replacing it by vertices further away from the origin can decrease
α∗(H). This situation happens frequently in the 3-dimensional graphs we deal with
in Subsection 5.4.4.

In the example we gave in Subsection 5.4.1, we started from a small graph H and
added vertices to it (Figure 5.16) as we realized that we needed them to keep α∗(H)
at 1

4 . This is not the approach that we choose in this subsection. Since G is infinite,
we need to choose from the start a finite number of vertices that we may add to the
graph we start from. This comes down to having those vertices in the graph in the
first place, but with zero-weight. Algorithm 2 naturally starts by giving non-zero
weight to as few vertices as possible (only one orbit in each Λ-class, as is the case in
Figure 5.14) and then increases the number of weighted vertices if it helps decrease
α∗(H) (this is what happens in Figure 5.16). Furthermore, we recall that the time
that (P3(k,w)) takes depends heavily on k. Thus, the running time of Algorithm 2
is decided by the number of vertices of the graphs on which we run (P3(k,w)) for
small values of k. Hence, unlike in Subsection 5.4.1, we would like to decrease the
size of H as k decreases.

For k ∈ [[0, k0]], let nk be the maximum size of graphs for which we can run
(P3(k,w)) in practice. We also define dk as the highest value such that |Vdk | 6 nk.
We introduce the program (P4(S , nk)) which, given a graph G = (V,E), a collection
S = {S1, . . . , Sℓ} of independent sets and a maximum size nk determines the best
weighting of V where at most nk vertices have non-zero weight. Let O1, . . . , Op be
the orbits of G and let ni,j = |Si ∩ Oj|. For each orbit Oj, we create a variable wj

that indicates the weight of the vertices of Oj and a binary variable Pj that indicates
if the vertices of Oj have non-zero weight. Our program is the following:

152 Thomas Bellitto

5. Optimal weighted independence ratio







minimize M subject to
p
∑

j=1

wj |Oj | =1

∀i ∈ [[1, ℓ]],

p
∑

j=1

ni,jwj 6M

∀j ∈ [[1, p]], Pj >wi

p
∑

j=1

|Oj |Pj 6nk

(P4(S , nk))

The objective and the first two constraints are the same as in (P1(S)). The third
constraint is the definition of Pj and the fourth is the constraint on the number of
the vertices of non-zero weight of the solution.

Given a infinite discrete graph G, Algorithm 3 builds a subgraph H of G of size
smaller than n0 and of small optimal weighted independence ratio. Note that this
algorithm is a heuristic and we do not claim that no subgraph of G of size smaller
than n0 can have better optimal weighted independence ratio than the graph H
returned by Algorithm 3.

Algorithm 3: Given a infinite discrete graph G and the numbers n0, . . . , nk0 ,
looks for a subgraph of G of small optimal weighted independence ratio.

1 Let H be the graph induced by Vdk0
.

2 Let O1, . . . , Op be the orbits of V
3 Let c1, . . . , cℓ be the Λ-classes of G.
4 Let S = {} and for all j ∈ [[1, p]], wj =

1
|V | . Let lb = 0.

5 for k = k0 down to 0 do
6 if lb > 1

2n then
7 Let w be the weighting returned by (P4(S , nk))
8 Remove all the vertices of weight 0 from H

9 else
10 V (H) = Vdk

11 Let ub = 1.
12 while ub 6= lb do
13 Let S be the independent set returned by (P3(k,w)).
14 S = S ∪ {S}.
15 ub = w(S)
16 Let w be the weighting returned by (P1(S)) and let lb be the

objective value.

17 return the wj and ub.

The idea is to start from a large set of vertices V , that we can only deal with
for large values of k. After each step of the for loop, we can use our current set

Walks, Transitions and Geometric Distances in Graphs. 153

5.4. Parallelohedron norms

S to have a lower bound on the optimal weighted independence ratio of a graph
by looking at the weighting that minimizes the sets of S . This lower bound is the
best we are able to provide on a graph of size nk. We then use this estimation to
find the best subset of V whose size will be manageable at the next step of the
algorithm. The algorithm ends when V is small enough (V = n0) to compute its
optimal weighted independence ratio exactly.

Note that as long as there are weightings for which the k-regular independent
sets have weight ratio 1

2n , there are generally too many weightings that can lead to
the optimal ratio and some of them they might need very few vertices (for example,
in the case of the regular hexagon, we only need to give non-zero weights to the
vertices of the orbit depicted in blue and green in Figure 5.13 to ensure that no
3-regular independent set has weight ratio higher than 1

4). We do not want to let
(P4(S , nk)) choose one of them arbitrarily and take the risk to remove vertices that
are important to optimize k-regular independent sets for smaller values of k. In this
situation, we choose to keep the vertices that are closest to the origin and therefore
set V (H) = Vdk .

Also note that our algorithm preserve the symmetries of the original set Vdk0
.

5.4.4 The truncated octahedron

Finally, we discuss in this subsection how to build the infinite discrete graph G
when the unit polytope is a truncated octahedron. We recall that the truncated
octahedron is a generalization of all the parallelohedra in dimension 3 (see Subsection
1.4.4) and while the regular truncated octahedron is not a generalization of the other
regular parallelohedra, it still appears to be the most difficult to deal with and is
the only regular one for which the Bachoc-Robins conjecture is still open [92].

As in Chapter 4, the graphs we build in this subsection are unions of Λ-classes
of R3. We choose in this subsection a finite number of Λ-classes to consider, and the
algorithm of the previous subsection then builds a finite graph by choosing orbits
among those Λ-classes.

Our aim is to generalize the constructions we used in Section 4.3 to prove the
Bachoc-Robins conjecture in dimension 2. Let P be the regular truncated octahe-
dron, let VP be its vertex set and let Λ be the lattice of a tiling of R3 by P. We
recall that P is the permutohedron of order 4 (see Definition 1.60) and throughout
this subsection, we use the coordinate system we described at the end of Subsection
1.4.4 to describe its vertices. We refer the reader to this part of the thesis for a
description of the edges and faces of P with this coordinate system. We assume
that the vertices of P are the permutation of {−3,−1, 1, 3} so that P is centered at
0 and all its edges have same length.

As we did in Section 4.3, we can define the vertex set of our graph G as V 32 =
1
2Λ+(VP ∪{0}). The set 1

2Λ contains eight Λ-classes and we then translate them by
the vectors of (VP∪{0}). The set (VP∪{0}) contains the origin and the 24 vertices of
the permutohedron, which are split between 6 Λ-classes. This set therefore contains
seven Λ-classes but what matters here is that it only contains four (12Λ)-classes:
indeed, if v and v′ are two opposite vertices of a square face, they do not belong to
the same Λ-class but their difference is a vector of 1

2Λ and thus, v + 1
2Λ = v′ + 1

2Λ.

154 Thomas Bellitto

5. Optimal weighted independence ratio

Hence, the set V 32 contains 32 Λ-classes. It is also interesting to note that V 32 is
the lattice generated by the vertices of P.

Unfortunately, we can prove that the graph induced by V 32 has independence
ratio 1

4 and not 1
8 as we hoped. Note that V 32 contains the center of the faces of

the polytopes of the tiling, but unlike the graphs that we built in the plane, it does
not contain the middle of the edges of the polytopes. In the proof of Theorems
4.15, 4.24 and 4.28, we defined our vertex set as the lattice generated by 1

2VP . This
lattice contains the middle of the edges of the polytopes of the tiling and is much
more likely to induce a graph of independence ratio 1

8 , but it contains 32× 23 = 256
Λ-classes and is very difficult to manage.

Let EP be the set of the middles of the edges of P. The set EP contains 36
vertices and 12 Λ-classes (since each edge belongs to 3 polytopes of the tiling). The
set VP ∪ {0} ∪EP thus contains 16 different Λ-classes which also define 16 different
(12Λ)-classes. The set V 128 = (VP ∪ {0} ∪ EP) +

1
2Λ therefore has 128 Λ-classes. In

practice, it takes significantly fewer vertices to achieve the same bounds with the
graphs we build from V 128 than with those we build from V 256.

Let H = {(a, b, c, d) ∈ R4 : a + b + c + d = 0} be the 3-dimensional hyperplane
of R4 that P is defined on. We note that the vertices of V 32 are defined as sums of
vertices whose coordinates all have same parity and therefore observe this property
too. Hence, V 32 = H ∩ ((2Z)4 ∪ (2Z + 1)4). The set V 128 is actually H ∩ Z4.
We can build an intermediate set V 64 by adding to H ∩ Z4 the constraint that
the first and second coordinates of the vertices must have same parity: V 64 =
H ∩ (((2Z)2 ∪ (2Z + 1)2)2). An equivalent definition that is easier to generalize to
non-regular case is V 64 = (VP ∪ {0} ∪ E′

P) +
1
2Λ where E′

P is the union of the Λ-
classes of the edges of one of the square (or parallelogram) face. The set V 64 is the
smallest that we have found for which we conjecture that the induced subgraph has
independence ratio 1

8 . In practice, V 64 and V 128 are the vertex sets that provide the
best results.

Our current best bound is achieved by the graph induced by the vertices of V 128

at distance 1.5 or less from 0.

Theorem 5.24. If P is the regular truncated octahedron,

m1(R
3, ‖ · ‖P) 6 0.130443

Since P is the last regular 3-dimensional parallelohedron for which the Bachoc-
Robins conjecture is open, the bound of Theorem 5.24 holds for any regular 3-
dimensional parallelohedron. Since the bound is smaller than 1

7 , this also implies
that the chromatic number of R3 equipped with a regular parallelohedron norm is
8 (achieved by a colouring similar to the one described in Section 4.5 and depicted
in Figure 4.16).

5.5 Conclusion

This chapter extends the work presented in Chapter 4 with a new method based
on the notion of optimal weighted independence ratio. The flexibility of our ap-
proach and the efficiency of our algorithms allow us to significantly improve the best

Walks, Transitions and Geometric Distances in Graphs. 155

5.5. Conclusion

known bounds on m1 and the fractional chromatic number of several spaces, for
both Euclidean and parallelohedron norms.

All the results presented in this chapter are very recent and the projects are still
ongoing. Possibilities for future works are presented in Section 7.3.

156 Thomas Bellitto

Chapter 6

Complexity of locally-injective
homomorphisms to tournaments

This chapter presents the results of [7], which is joint work with Stefan Bard, Christo-
pher Duffy, Gary MacGillivray and Feiran Yang.

Contents

6.1 Introduction . 157

6.2 Ios-injective homomorphisms 161

6.3 Iot-injective homomorphisms 171

6.4 Conclusion . 180

6.1 Introduction

6.1.1 Our problem

Given two graphs G and H, a homomorphism f : G → H is locally-injective if, for
every v ∈ V (G), it is injective when restricted to the neighbourhood of v. Depending
on how we define the neighbourhood of a vertex, there exist several variants of this
definition, especially in the oriented case.

The problem of determining the existence of a locally-injective homomorphism
between two graphs has been widely studied in the cases of both undirected and of di-
rected graphs. Locally-bijective and locally-injective homomorphisms are also widely
studied under the names of graph cover and partial graph cover respectively. The al-
gorithmic and complexity aspects of locally-injective homomorphisms for undirected
graphs have been examined by a variety of authors and in a variety of contexts in
[46], [47], [48], [49], [84] or [100] among others. The notions of injective colouring
and injective chromatic number also derive from locally-injective homomorphism
and have been studied in [26], [38] and [58] for example. Locally-injective homomor-
phisms of graphs find application in a range of areas including bio-informatics [16]
[43] [45] and coding theory [58].

In this chapter, we consider locally-injective homomorphisms of oriented graphs
(see Definition 1.2). We mentioned in Subsection 1.1.2 that the problem of graph

157

6.1. Introduction

homomorphism is trivial if the target graph G has a loop on a vertex v since the
function that maps all the vertices of F to v is a homomorphism from F to G.
However, this homomorphism is not injective and the existence of a locally-injective
homomorphism between two graphs is non-trivial even if the target graph is reflexive.

To define locally-injective homomorphisms of oriented graphs formally, one must
choose the neighbourhood(s) on which the homomorphism must be injective. Up to
symmetry, there are four natural choices:

(1) N−(v) (we can choose N+(v) instead but it leads to an equivalent problem);

(2) N+(v) and also N−(v);

(3) N+(v) ∪N−(v);

(4) N+[v] ∪N−[v] = N+(v) ∪N−(v) ∪ {v}.

If the target is irreflexive, (2), (3) and (4) are equivalent. Under (4), adja-
cent vertices must always be assigned different colours, and hence whether or not
the target contains loops is irrelevant. Therefore, we may assume that targets are
irreflexive when considering (4). Then, a locally-injective homomorphism to an ir-
reflexive target satisfying (4) is equivalent to a locally-injective homomorphism to
the same irreflexive target under either (2) or (3). As such, we need not consider
(4). We are left with three possible definitions of locally-injective homomorphisms
depending on whether we take (1), (2) or (3) as our injectivity requirement.

Definition 6.1. Locally-injective homomorphisms:

Given two graphs G and H, a homomorphism f : G → H is

(1) in-injective if and only if for all vertex v of G, it is injective on N−(v);

(2) ios-injective (for “in and out separately”) if and only if for all vertex v of G,
it is injective on N+(v) and on N−(v);

(3) iot-injective (for “in and out together”) if and only if for all vertex v of G, it
is injective on N+(v) ∪N−(v).

In-injective, ios-injective and iot-injective n-colourings of a graph G are respec-
tively in-injective, ios-injective and iot-injective homomorphisms between a graph G
and a tournament T on n vertices.

Example 6.2.

Let us look for ios- and iot-injective colourings of the graph G from Example
1.13.

We can pick arbitrarily the colour of v1, say blue. By injectivity, the vertices v2,
v3 and v4 must all receive different colours but since the target is reflexive, one of
them can be blue.

In an ios-injective colouring of G, the vertex v0 can be blue too since there is no
other blue vertex in the in-neighbourhood of v1. Figure 6.1 depicts a 3-ios-injective
colouring of G and since N+(v1) has size 3, this colouring is optimal.

158 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

v0 v1

v4

v3

v2

v5

(a) A 3-ios-injective colouring of G. (b) The associated target tournament.

Figure 6.1

v0 v1

v4

v3

v2

v5

(a) A 4-iot-injective colouring of G. (b) An associated target tournament.

Figure 6.2

In an iot-injective colouring of G, the vertex v0 cannot be blue if there already
is a blue vertex in the out-neighbourhood of v1. Figure 6.2 depicts a 4-iot-injective
colouring of G and since N+(v1) ∪N−(v1) has size 4, this colouring is optimal.

When studying the complexity of a problem such as homomorphism to given
graphs, the ideal objective would be to establish in which case the problem is poly-
nomial and in which case it is not. However, since the problem is always in NP,
establishing that it is not polynomial would require to prove that P 6= NP, which
seems out of reach with our current knowledge. Our objective is thus to establish
what we call a dichotomy theorem. A dichotomy theorem consists of partitioning the
problems in two sets and proving that the problems of the first set are polynomial
on that those of the second are NP-complete.

The problem of in-injective homomorphism has been examined by MacGillivray,
Raspaud, and Swarts in [83] and [84]. They give a dichotomy theorem for the
problem of in-injective homomorphism to reflexive oriented graphs; and one for the
problem of in-injective homomorphism to irreflexive tournaments. The problem of
in-injective homomorphism to irreflexive oriented graphs H is shown to be NP-
complete when the maximum in-degree of H, ∆−(H), is at least 3, and Polynomial
when ∆−(H) = 1. For the case ∆−(H) = 2 they show that every instance of
directed graph homomorphism polynomially transforms to an instance of in-injective
homomorphism to a target with maximum in-degree 2. As such the restriction of
in-injective homomorphism to targets H so that ∆−(H) = 2 constitutes a rich class

Walks, Transitions and Geometric Distances in Graphs. 159

6.1. Introduction

of problems.
The remaining problems, ios-injective homomorphism and iot-injective homo-

morphism, are considered by Campbell, Clarke and MacGillivray in [19], [20] and
[21] and their main results are presented in Subsection 6.1.2. In this chapter, we
extend their results to provide dichotomy theorems (Theorem 6.14 and 6.26) for the
restriction of the problems of iot-injective homomorphism and ios-injective homo-
morphism to reflexive tournaments.

6.1.2 Known results

For a fixed undirected graph H, the problem of determining whether an undirected
graph G admits a homomorphism to H (i.e., the H-colouring problem) admits a
well-known dichotomy theorem.

Theorem 6.3. Hell-Nešetřil (1990) [61]

Let H be an undirected graph.
• If H is irreflexive and non-bipartite, then H-colouring is NP-complete.
• If H has a loop, or is bipartite, then H-colouring is Polynomial.

A dichotomy theorem for the complexity of H-colouring of directed graphs is
given by Bulatov [18] and Zhuk [114].

For fixed small reflexive tournaments T , Campbell, Clarke and MacGillivray give
the following result for the complexity of ios-injective T -colouring and iot-injective
T -colouring.

Theorem 6.4. Campbell, Clarke and MacGillivray (2009) [19, 20, 21]
If T is a reflexive tournament on 2 or fewer vertices, then ios-injective T -

colouring and iot-injective T -colouring are Polynomial. If T is a reflexive tour-
nament on 3 vertices, then ios-injective T -colouring and iot-injective T -colouring
are NP-complete.

There are two reflexive tournaments on three vertices which are depicted in
Figure 6.3.

(a) The oriented cycle of three vertices C3. (b) The transitive tournament on three ver-
tices TT3.

Figure 6.3: The two reflexive tournaments on three vertices.

Note that Theorem 6.4 only solves the complexity of a finite number of tar-
gets and prior to our work, no dichotomy results were known on infinite classes of
tournaments.

160 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

In Section 6.2, we show that ios-injective homomorphism is NP-complete for
any reflexive target tournament on 4 vertices or more and we thereby establish a
dichotomy theorem for the complexity of ios-injective homomorphisms to reflexive
tournaments (Theorem 6.14). In Section 6.3, we show that iot-injective homomor-
phism is also NP-complete for reflexive tournaments on 4 or more vertices which
leads to a similar dichotomy theorem (Theorem 6.26).

6.2 Ios-injective homomorphisms

In this section we prove a dichotomy theorem for ios-injective T -colouring, where T
is a reflexive tournament. In Subsection 6.2.1 and 6.2.2, we show respectively that
ios-injective T4-colouring and ios-injective T5-colouring are NP-complete (Theorems
6.7 and 6.9) where T4 and T5 are the tournaments depicted in Figures 6.4 and 6.9.
We then show in Subsection 6.2.3 that any instance of ios-injective T -colouring,
where T is a reflexive tournament on at least 4 vertices, polynomially reduces to an
instance of ios-injective T ′-colourings, where T ′ is C3, TT3, T4 or T5 (see Figures
6.3, 6.4 and 6.9). The dichotomy theorem follows from combining these results with
the result in Theorem 6.4.

6.2.1 Ios-injective T4-colouring

We begin with a study of ios-injective T4-colouring where T4 is the graph depicted
in Figure 6.4.

d

a b

c

Figure 6.4: T4, the only strongly connected reflexive tournament on four vertices.

To show that ios-injective T4-colouring is NP-complete we provide a transforma-
tion from 3-edge-colouring (see Definition 1.14) subcubic graphs. A subcubic graph
is an undirected graph whose maximum degree is 3. Holyer proves in [62] that
3-edge-colouring is NP-complete even when restricted to subcubic graphs.

We construct an oriented graph H from a graph G so that G has a 3-edge-
colouring if and only if H admits an ios-injective homomorphism to T4. The key
ingredients in this construction are a pair of oriented graphs, Hx and He, given in
Figures 6.5 and 6.6, respectively.

We first establish a few preliminary results on T4-colourings of our gadgets.

Lemma 6.5. In any ios-injective T4-colouring of Hx (depicted in Figure 6.5):

1. the vertices 3, 13 and 23 are coloured a;

Walks, Transitions and Geometric Distances in Graphs. 161

6.2. Ios-injective homomorphisms

0 1 2

3 4

5
6

7 8

9
10

11

1213

14

15

1617

18

19

20

2122

2324

25
26

2728

29
30

Figure 6.5: Hx.

0

1

2

3

4

5

6

7

8

9

Figure 6.6: He.

2. vertex 0 is coloured d.

Proof. (1) By symmetry, it suffices to show the claim for vertex 3. Let us first note
that the vertices 3 and 7 have out-degree 3 and can therefore only be coloured a
or b, as these are the only vertices of out-degree 3 in T4. If vertex 7 is coloured a,
then its two in-neighbours, vertices 5 and 6, are coloured d and a. However, this is
impossible as no vertex of out-degree three in T4 has both d and a as out-neighbours.
Hence, vertex 7 is coloured b. If vertex 3 is coloured b, then vertices 5 and 6 would
be both in- and out-neighbours of vertices coloured b. Thus, each of vertices 5 and 6
are coloured b. This is a violation of the injectivity requirement. Therefore, vertex
3 (and by symmetry, the vertices 13 and 23) must be coloured a.

162 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

(2) Notice that the square vertices in the graph Hx (vertices 1, 11 and 21) cannot
be coloured a; they each have an in-neighbour that already has an out-neighbour
coloured a. These square vertices have a common out-neighbour and so must receive
distinct colours by the injectivity requirement. As none is coloured a, these three
vertices are coloured b, c and d, in some order. The only vertex that is an out-
neighbour of b, c and d in T4 is d. And so, the common out-neighbour of vertices 1,
11 and 21 (i.e., vertex 0) has colour d.

Lemma 6.6. Let H ′
e be an oriented graph formed from a copy of He (Figure 6.6)and

two copies of Hx (Figure 6.5)by identifying vertex 0 in He with any square vertex in
one copy of Hx and identifying vertex 9 in He with any square vertex in the other
copy of Hx. In any ios-injective T4-colouring of H ′

e, the vertices 0 and 9 in the
subgraph induced by He have the same colour.

Proof. Let H ′
e be constructed as described. Consider an ios-injective T4-colouring

of H ′
e. We examine the colours of the vertices in the subgraph induced by the copy

of He. By Lemma 6.5 and the construction of H ′
e, vertices 0 and 9 each have an

in-neighbour that has an out-neighbour coloured a. By the injectivity requirement,
neither vertex 0 nor 9 is coloured a. We proceed in cases to show that vertices 0
and 9 receive the same colour.

Case I: vertex 0 is coloured b. Vertex 1 cannot be coloured d as vertex 0 already
has an out-neighbour coloured d (vertex 0 in a copy of Hx). Vertex 1 cannot be
coloured c as no 3-cycle of T4 contains both a vertex coloured b and a vertex coloured
c. Thus, vertex 1 must be coloured b. The vertex 2 is both an in-neighbour and
an out-neighbour of vertices coloured b and is therefore coloured b. The vertex 4 is
an in-neighbour of vertex 1, and so cannot be coloured b as vertex 1 already has an
in-neighbour coloured b. The vertex 4 must thus be coloured a. By injectivity, the
out-neighbours of vertex 4 must receive distinct colours that are out-neighbours of
a in T4. Therefore, vertices 3 and 5 are coloured a and c in some order, as vertex 1
is coloured b. The only common out-neighbour of a and c in T4 is c. As such, the
vertex 6 must be coloured c. By injectivity, each of the in-neighbours of vertex 6
must receive distinct colours that are in-neighbours of c in T4. And so vertex 7 must
be coloured b. As vertex 9 cannot be coloured a and it has an out-neighbour coloured
b, namely vertex 7, we have that vertex 9 must be coloured b. Thus, vertices 0 and
9 have the same colour.

Case II: vertex 0 is coloured c. Vertex 1 cannot be coloured d as vertex 0
already has an out-neighbour coloured d (vertex 0 in a copy of Hx). Since the
out-neighbours of c in T4 are c and d, vertex 1 is coloured c.

The vertex 4 has an out-neighbour coloured c, and so must be coloured a or b
or c. Since vertex 0 is coloured c, vertex 4 cannot be coloured c without violating
injectivity. We claim vertex 4 is coloured b.

By way of contradiction, suppose that vertex 4 is coloured a. Then by injectivity,
vertices 3 and 5 are coloured a and b, in some order. The only out-neighbour of a

Walks, Transitions and Geometric Distances in Graphs. 163

6.2. Ios-injective homomorphisms

and c in T4 that has in-degree 3 is c. As such vertex 6 is coloured c. The vertex c in
T4 has three in-neighbours – a, b, and c. As vertex 6 has in-neighbours coloured a
and b (namely, vertices 3 and 5), then by injectivity the third in-neighbour of vertex
6 (namely, vertex 7) is coloured c. In T4, c has two out-neighbours: c and d. Since
vertex 7 is coloured c and already has an out-neighbour coloured c, vertex 8 must be
coloured d. The vertex 9 has an in-neighbour coloured d. Only vertices a and d in
T4 have d as an in-neighbour. Therefore, vertex 9 is coloured with a or d. However,
we have shown previously that vertex 9 cannot be coloured a. This implies, that
vertex 9 is coloured d. However, vertex 9 has an out-neighbour coloured c. Since c
is not an out-neighbour of d in T4, we arrive at a contradiction. Thus, vertex 4 is
not coloured a. Therefore, vertex 4 is coloured b.

Since vertex 4 is coloured b, vertices 3 and 5 are coloured b and d, in some
order. The only common out-neighbour of b and d in T4 is d. Therefore, vertex 6
is coloured d. Hence, by injectivity, the vertex 7 is coloured c. Since vertex 7 has
an out-neighbour coloured d, vertex 8, another out-neighbour of vertex 7 must be
coloured c. Since 9 has both an in-neighbour and an out-neighbour coloured c, the
vertex 9 must be coloured c. Thus, vertices 0 and 9 have the same colour.

Case III: Vertex 0 is coloured d. Vertex 1 cannot be coloured d as vertex 0
already has an out-neighbour coloured d (vertex 0 in a copy of Hx). Vertex d has
two out-neighbours in T4: a and d. Therefore, vertex 1 is coloured a.

The vertex 4 has out-degree 3 and an out-neighbour coloured a. Vertex a is the
only vertex in T4 to have out-degree 3 and have a as an out-neighbour. Therefore,
vertex 4 is coloured a. By injectivity the vertices 3 and 5, the remaining out-
neighbours of vertex 4, are coloured b and c. The vertex 7 cannot be coloured d since
9 already has an out-neighbour coloured d (vertex 37 in a copy of Hx). Moreover,
vertex 7 is an in-neighbour of 6, which already has in-neighbours coloured c and b.
Hence, the vertex 7 must be coloured a. In T4 the only in-neighbours of a are a and
d. Thus, vertex 9 is coloured a or d. Since vertex 9 has an out-neighbour coloured
d, it cannot be coloured a. Therefore, vertex 9 is coloured d, as required.

We can now prove the main theorem of this subsection.

Theorem 6.7.
The problem of ios-injective T4-colouring is NP-complete.

Proof. The transformation is from 3-edge-colouring of subcubic graphs.
Let G be a graph with maximum degree at most 3 and let G̃ be an arbitrary

orientation of G. We create an oriented graph H from G̃ as follows. For every
x ∈ V (G) we add Hx, a copy of the oriented graph given in Figure 6.5, to H. For
every arc e ∈ E(G̃) we add He, a copy of the oriented graph given in Figure 6.6,
to H. To complete the construction of H, for each arc e = uv ∈ E(G̃) we identify
the vertex 0 in He with one of the three square vertices (i.e., vertices 1, 11, or 21)
in Hu and identify the vertex 9 in He with one of the three square vertices in Hv.
We identify these vertices in such a way that each square vertex in a copy of Hx is
identified with at most one square vertex from a copy of He. We note that this is
always possible as vertices in G have degree at most three.

164 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

We claim G has a 3-edge-colouring if and only if H has an ios-injective T4-
colouring. The proof is in two parts:

• Suppose that an ios-injective T4-colouring of H is given. This ios-injective
T4-colouring induces a 3-edge-colouring of G: the colour of an edge in e ∈ E(G) is
given by colour of vertices 0 and 9 in corresponding copy of He contained in H. By
Lemma 6.6, this colour is well-defined. Recall that for each copy of Hx, the vertices
1, 11 and 21 are respectively identified with either vertex 0 or vertex 9 in some copy
of He. Therefore by Lemma 6.5, each of the edges incident with any vertex receive
different colours and no more than 3 colours, namely b, c, and d, are used on the
edges of G.

• Suppose that a 3-edge-colouring of G, f : E(G) → {b, c, d} is given. For
each e ∈ E(G), we colour He using one of the ios-injective T4-colourings given in
Figure 6.7. We choose the colouring of each copy of He so that vertices 0 and 9 in
that copy are assigned the colour f(e). To complete the proof, we show that such a
colouring can be extended to all copies of Hx contained in H.

b

b

b

a

a

c

c
b

b

b

(a) The colouring of He when f(e) = b.

c

c

c
b

b

d

d

c

c

c

(b) The colouring of He when f(e) = c.

d

a

b

b

a

c

c

a

b

d

(c) The colouring of He when f(e) = d.

Figure 6.7

The vertices 1, 11 and 21 of each copy of Hx may be identified with either vertex
0 or vertex 9 of some copy of He. Since f is a 3-edge-colouring of G, if we colour
each copy of He using Figure 6.7, the vertices 1, 11 and 21 of a same copy of Hx all
receive distinct colours from the set {b, c, d}. By symmetry of Hx, we can assume
without loss of generality that for all vertex x, an edge incident to x and coloured b
uses the vertex 1 of Hx, an edge coloured c uses the vertex 11 and an edge coloured
d uses the vertex 21. The ios-injective T4-colouring given in Figure 6.8 extends a
pre-colouring of the vertices 1, 11 and 21 with colours b, c, and d, respectively, to
an ios-injective T4-colouring of Hx. Therefore, G has a 3-edge-colouring if and only
if H admits an ios-injective T4-colouring

Walks, Transitions and Geometric Distances in Graphs. 165

6.2. Ios-injective homomorphisms

d b a

a c

b
a

b b

d
c

c

aa

c

a

bb

b

d

c

dd

ac

a
b

bb

d
c

Figure 6.8: A colouring of Hx.

Since the construction of H can be carried out in polynomial time, ios-injective
T4-colouring is NP-complete

6.2.2 Ios-injective T5-colouring

We now prove the NP-completeness of ios-injective T5-colouring where T5 is the
graph depicted in Figure 6.9.

a

b

cd

e

Figure 6.9: T5, the only reflexive tournament on five vertices where all the vertices
have in-degree and out-degree three.

The transformation is from ios-injective C3-colouring (see Theorem 6.4). We
construct an oriented graph J from a graph G so that G admits an ios-injective

166 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

homomorphism to C3 if and only if J admits an ios-injective homomorphism to T5.
The key ingredient in this construction is the oriented graph Jv , given in Figure
6.10.

0 4 8 12 16

1

2

3

5

6

7

9

10

11

13

14

15

17

18

19

Figure 6.10: Jv.

For each n > 0 we construct an oriented graph Jn from n copies of Jv, say
Jv0 , Jv1 , . . . , Jvn−1 , by letting vertices 17, 18 and 19 of Jvi be in-neighbours of vertex
0 in Jvi+1 (mod n) for all i ∈ [[0, n − 1]].

Like previously, we start be studying the ios-injective T5-colourings of Jn.

Lemma 6.8.
For any positive integer n, in an oriented ios-injective T5-colouring of Jn, each

of the vertices labelled 0 (respectively, 4, 8, 12 and 16) receive the same colour.

Proof. Since T5 is vertex-transitive, assume without loss of generality that vertex
0 in Jv0 receives colour a. If 0 is coloured a, then the vertices 1, 2 and 3 must be
coloured a, b and c in some order since these vertices are the only out-neighbours
of a in T5. Since vertex c is the only common out-neighbour of vertices a, b and c
in T5, vertex 4 must be coloured c. Since the automorphism of T5 that maps a to
c also maps c to e, we conclude by a similar argument that vertex 8 is coloured e.
Similarly, we conclude that vertex 12 is coloured b and vertex 16 is coloured d.

Since vertex 16 is coloured d in Jv0 , vertices 17, 18, 19 are coloured, in some
order, a, e, d, as these are the only out-neighbours of d in T5. The only common
out-neighbour of a, e and d in T5 is a. Therefore, vertex 0 in Jv1 is coloured a.
Repeating this argument, we conclude that vertices 4, 8, 12 and 16 in Jv2 receive
colours c, e, b and d, respectively. Continuing in this fashion gives that in an oriented
ios-injective T5-colouring of Jn each of the vertices labelled 0 (respectively, 4, 8, 12
and 16) receive the same colour.

Theorem 6.9.
The problem of ios-injective T5-colouring is NP-complete.

Proof. We prove the NP-completeness of ios-injective T5-colouring by reducing ios-
injective C3-colouring, which is proved NP-complete in [20] (see Theorem 6.4).

Let G be a graph with vertex set {v0, v1, . . . , v|V (G)|−1}. Let νG = |V (G)|. We
construct J from G by first adding a copy of JνG to G and then, for each i ∈ [[1, νG]],
adding an arc from vertex 11 in Jvi to vi.

We show that J has an ios-injective T5-colouring if and only if G has an ios-
injective C3-colouring.

Consider an ios-injective T5-colouring of J . Since T5 is vertex-transitive we can
assume without loss of generality that the vertex 8 in each copy of Jv is coloured a.

Walks, Transitions and Geometric Distances in Graphs. 167

6.2. Ios-injective homomorphisms

Therefore, in each Jvi , vertices 9, 10 and 11 are coloured, in some order, with colours
a, b, c; and vertex 12 is coloured c.

We claim that vi is coloured with b, d or e for all i ∈ [[0, νG− 1]]. If vi is coloured
a, then vertex 11 in Jvi has both an in-neighbour and an out-neighbour coloured
a and is therefore coloured a. Thus, vertex 7 in Jvi also has both an in- and an
out-neighbour coloured a and must be coloured a. Since vertex 11 already has an
out-neighbour coloured a, this contradicts the injectivity requirement. If vi has
colour c, then vertex 11 in Jvi has two out-neighbours coloured c, which is also a
violation of the injectivity requirement.

Therefore, vi is coloured with one of b, d or e for each i ∈ [[0, νG−1]]. Since vertices
b, d and e of T5 induce a copy of C3 in T5, restricting an ios-injective T5-colouring
of J to the vertices of G yields an ios-injective C3-colouring of G.

Let β be an ios-injective C3-colouring of G using colours b, d and e. We extend
such a colouring to be an ios-injective T5-colouring of J by assigning to the vertices of
each Jvi colours based upon β(vi) as shown in Figure 6.11. Every vertex vi ∈ V (G)
is the out-neighbour of vertex 11 of Jvi but this cannot lead to a violation of the
injectivity requirement since vertex 11 of Jvi is always coloured either a or c while
the vertices of G are coloured b, d or e.

Therefore, J has an ios-injective T5-colouring if and only if G has an ios-injective
C3-colouring. Since J can be constructed in polynomial time, ios-injective T5-
colouring is NP-complete.

6.2.3 Dichotomy theorem

We now present a reduction to instances of ios-injective T -colouring for when T has
a vertex v of out-degree at least four. This reduction allows us to polynomially
transform an instance of ios-injective T -colouring to an instance of ios-injective T ′-
colouring, where T ′ is T4, T5, C3 or TT3.

Lemma 6.10. If T is a reflexive tournament on n vertices with a vertex v of out-
degree at least four, then ios-injective homomorphism to T ′ polynomially transforms
to ios-injective homomorphism to T , where T ′ is the tournament induced by the
strict out-neighbourhood of v.

Proof. Let T be a reflexive tournament on n vertices with a vertex v of out-degree
at least four. Let G be an oriented graph with vertex set {w0, w1, . . . , w|V (G)|−1}.
Let νG = |V (G)|. We construct H from G by adding to G

• vertices x0, x1, . . . , xνG−1;

• an arc from xi to wi for all i ∈ [[0, νG − 1]];

• νG irreflexive copies of T , labelled Ti, for all i ∈ [[0, νG − 1]].

Let vi ∈ Ti be the vertex corresponding to v ∈ V (T). We complete our construction
by adding the arcs vixi and xivi+1 (mod νG) for all i. This construction is illustrated
in Figure 6.12.

Proposition 6.11. In an ios-injective T -colouring of H no two vertices of Ti have
the same colour.

168 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

b d a c e b

e

a

b

b

c

d

d

e

a

c

b

a

c

d

e

e

a

b

b
vi

G

(a) A colouring of the vertices of Jvi when β(vi) = b.

b d a c e b

e

a

b

b

c

d

a

d

e

a

b

c

c

d

e

e

a

b

d
vi

G

(b) A colouring of the vertices of Jvi when β(vi) = d.

b d a c e b

e

a

b

b

c

d

a

e

d

a

b

c

c

d

e

e

a

b

e
vi

G

(c) A colouring of the vertices of Jvi when β(vi) = e.

Figure 6.11

Proof. Since T has a vertex of out-degree at least 4 we observe that T has at least
4 vertices. By way of contradiction, assume that two vertices x and y receive the
same colour c and let z be a third vertex of Ti. By injectivity, x and y cannot both
be in- or out-neighbours of z. Thus, z has an in-neighbour and an out-neighbour
coloured c which is only possible if z itself is coloured c. Let w be a fourth vertex
of Ti. Since x, y and z are all neighbours of w, w has three strict neighbours with
the same colour, which is impossible in an ios-colouring of Ti.

Proposition 6.12. In an ios-injective T -colouring of H, every vertex of {x0, x1, . . . ,
xνG−1} ∪ {v0, v1, . . . , vνG−1} receives the same colour.

Proof. By Proposition 6.11, all the colours of T are used exactly once in each Ti.

Walks, Transitions and Geometric Distances in Graphs. 169

6.2. Ios-injective homomorphisms

vi

wi

xi

G

Ti Ti+1

Figure 6.12: The construction of H in Lemma 6.10.

Therefore, the only possible colour for an out-neighbour or an in-neighbour of vi
outside of Ti is ϕ(vi). Thus, for each i, we have ϕ(vi) = ϕ(xi) = ϕ(xi+1 (mod νG)).
The proposition follows.

Since T0 is a copy of T , we know that an ios-injective homomorphism ϕ maps v0
to a vertex of the same orbit as v. We may assume without loss of generality that
ϕ(v0) = v. Thus, by Proposition 6.12, ϕ(vi) = v for all i ∈ [[0, νG − 1]].

Let T ′ be the reflexive tournament induced by the strict out-neighbourhood of
v. Note that T ′ is a reflexive tournament on at least 3 vertices and an induced
subgraph of T . We show that H has an ios-injective T -colouring if and only if G
has an ios-injective T ′-colouring.

Let ϕ be an ios-injective T -colouring of H. By our previous claim, each xi has
an in-neighbour and an out-neighbour with colour v, namely vi ∈ V (Ti) and vi−1 ∈
V (Ti−1). Therefore, ϕ(wi) is an out-neighbour of v in T . That is, ϕ(wi) ∈ V (T ′).
Therefore, the restriction of ϕ to the vertices of G yields an ios-injective T ′-colouring
of G.

Let β be an ios-injective T ′-colouring of G. For all i ∈ [[0, νG − 1]] and all
u ∈ V (T). Let ui ∈ V (Ti) be the vertex corresponding to u ∈ V (T).

We extend β to be an ios-injective T -colouring of H as follows:

• β(xi) = β(vi) = v for all i ∈ [[0, νG − 1]];

• for all ui ∈ Ti, let β(ui) = u.

Hence, ios-injective T ′-colouring ofG can be polynomially reduced to ios-injective
T -colouring of H.

If T is a reflexive tournament with a vertex of in-degree at least 4, a similar
argument holds. We modify the construction by reversing the arc between xi and
wi in the construction of H.

Lemma 6.13. If T is a reflexive tournament on n vertices with a vertex v of in-
degree at least four, then ios-injective homomorphism to T ′ polynomially transforms

170 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

to ios-injective homomorphism to T , where T ′ is the tournament induced by the
strict in-neighbourhood of v.

Our results compile to give a dichotomy theorem.

Theorem 6.14.

Let T be a reflexive tournament. If T has at least 3 vertices, then the problem of
deciding whether a given oriented graph G has an ios-injective homomorphism to T
is NP-complete. If T has 1 or 2 vertices, then the problem is Polynomial.

Proof. If T is a reflexive tournament on no more than three vertices, the result
follows by Theorem 6.4. Suppose then that T has four or more vertices. If T = T4,
or if T = T5, then the result follows from Theorem 6.7 or Theorem 6.9. Up to
isomorphism, there are 16 distinct reflexive tournaments on 4 or 5 vertices. By
inspection, tournaments T4 and T5 respectively are the only reflexive tournaments
on 4 and 5 vertices respectively with no vertex of out-degree or in-degree four. Since
the average out-degree of a reflexive tournament on n > 5 vertices is n−1

2 + 1 > 3,
every reflexive tournament on at least six vertices has a vertex with out-degree at
least four. Therefore, if T has at least four vertices, T 6= T4 and T 6= T5, then T has
a vertex with either in-degree or out-degree at least four. By repeated application
of Lemma 6.10 and Lemma 6.13, an instance of ios-injective homomorphism to T
polynomially transforms to instance of either ios-injective homomorphism to T4;
ios-injective homomorphism to T5 or ios-injective homomorphism to a target on 3
vertices.

6.3 Iot-injective homomorphisms

As is the case with ios-injectivity, it has been proven in [19, 20] that the problem is
Polynomial if T has two vertices or fewer and that the problem is NP-complete if T
is one of the two reflexive tournaments on three vertices. To extend this result, we
employ similar methods as the ones used in the case of ios-injective T -colouring in
the previous section. Again, we show respectively in Subsection 6.3.1 and 6.3.2 that
iot-injective T4-colouring and iot-injective T5-colouring are NP-complete (Theorems
6.18 and 6.20). In Subsection 6.3.3, we are able to prove a lemma analagous to
Lemma 6.10. Dichotomy theorem 6.26 follows.

6.3.1 Iot-injective T4-colouring

We begin with a study of iot-injective T4-colouring (where T4 is the graph depicted
in Figure 6.4). To show iot-injective T4-colouring is NP-complete we reduce 3-edge-
colouring. We construct an oriented graph F from a graph G so that G has a
3-edge-colouring if and only if F admits an iot-injective homomorphism to T4. The
key ingredients in this construction are a pair of oriented graphs; Fx and Fe given
in Figures 6.13 and 6.14, respectively.

Lemma 6.15. In any iot-injective T4-colouring of Fx (Figure 6.13), vertex 0 is
coloured b and vertex 4 is coloured a.

Walks, Transitions and Geometric Distances in Graphs. 171

6.3. Iot-injective homomorphisms

5 6

4

01 2

3

Figure 6.13: Fx.

12

11

9

10

7

8

3

5

0

4

2

6

1

Figure 6.14: Fe.

Proof. Consider some iot-injective T4-colouring of F . Vertex 0 of Fx has out-degree
3. Since each vertex of T4 has at most three out-neighbours (including itself), vertex
0 must have the same colour as one of its out-neighbours. To satisfy the injectivity
constraint, if a colour appears on an out-neighbour of vertex 0, that colour cannot
appear on an in-neighbour of vertex 0. Therefore, vertex 4 does not have the same
colour as vertex 0. Both vertices 4 and 0 have out-degree 3, and there is an arc
from 4 to 0. Vertex a in T4 is the only vertex to have out-degree 3 and have a
strict out-neighbour with out-degree 3. Hence, vertex 4 is coloured a and vertex 0
is coloured b.

Lemma 6.16. In any iot-injective T4-colouring of Fe (Figure 6.14), vertex 7 is
coloured a and vertex 9 is coloured b.

Proof. This proof is similar to the proof of Lemma 6.15 since the subgraph of Fe

induced vertices 3, 7, 8, 9, 10, 11 and 12 is isomorphic to Fx.

Lemma 6.17. Let F ′
e be the oriented graph formed from a copy of Fe and two copies

of Fx by identifying vertex 0 in the copy of Fe with any square vertex in one copy
of Fx and identifying vertex 6 in the copy of Fe with any square vertex in the other
copy of Fx. In any iot-injective T4-colouring of F ′

e, vertices 0 and 6 in the subgraph
induced by Fe have the same colour, and are coloured with one of b, c or d.

Proof. Let F ′
e be constructed as described. Consider an iot-injective T4-colouring

of F ′
e. We examine the colours of the vertices in the subgraph induced by the copy

of Fe. By Lemma 6.15 and the construction of F ′
e, vertices 0 and 6 in Fe have an

in-neighbour coloured b – vertex 0 in a copy of Fx. Since b is not an in-neighbour
of a in T4, vertex 0 in the copy of Fe must receive one of the colours b, c, or d. We
proceed in cases based on the possible colour of vertex 0 in copy of Fe.

Case I: Vertex 0 is coloured b. Since the vertex 0 already has a neighbour
coloured b (vertex 0 in a copy of Fx), vertex 3, an in-neighbour of vertex 0 in Fe,
cannot be coloured b. Since b ∈ V (T4) has only a and b as in-neighbours, vertex 3
must be coloured a. By Lemma 6.16 vertex 3 has a neighbour coloured a – namely
vertex 7. By the injectivity constraint, this colour cannot appear on any other
neighbour of vertex 3. As such, vertices 2 and 4 are coloured d and c respectively.
The only common out-neighbour of d and c in T4 is d. Therefore, vertex 5 has colour

172 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

d. In T4, vertex d has three in-neighbours – b, c and d. Since c and d both appear
in the in-neighbourhood of vertex 5, vertex 6 must be coloured b.

Case II: Vertex 0 is coloured c. Vertex c in T4 has three in-neighbours: a, b
and c. Since vertex 0 has an in-neighbour coloured b, namely the vertex 0 in a copy
of Fx, vertex 3 in Fe must have either colour a or colour c.

By way of contradiction, assume that vertex 3 is coloured c. In this case, the
injectivity constraint implies that vertex 1 is not coloured c. Since c and d are
the only out-neighbours of c in T4, vertex 1 must be coloured d. Vertex 2, an in-
neighbour of vertex 3, is coloured with one of a, b or c, the in-neighbours of c in T4.
By Lemma 6.16, vertex 3 has a neighbour coloured a – vertex 7. By assumption,
vertex 0 has colour c. Therefore, by injectivity, vertex 2 has colour b. This is a
contradiction, as the arc between vertex 1 and vertex 2 does not have the same
direction as the arc between vertex c and vertex b in T4. Therefore, vertex 3 is
coloured a.

In T4, the in-neighbours of a are a and d, and the out-neighbours of a are a, b
and c. Since vertex 7 is coloured a, no other neighbour of vertex 3 can be coloured
a. Therefore, vertex 2, an in-neighbour of vertex 3, must have colour d. Since vertex
0 is coloured c, vertex 4, an out-neighbour of vertex 3 must have colour b. Vertex
5, a common in-neighbour of vertices 2 and 4, must be coloured with a common
in-neighbour of d and b in T4. The only such vertex in T4 is d. Hence, vertex 5 has
colour d.

Vertex d in T4 has three in-neighbours: b, c and d. Since vertex 5 already has
in-neighbours coloured b and d (vertices 4 and 2 respectively), vertex 6 must be
coloured c, as required.

Case III: Vertex 0 is coloured d. Recall by Lemma 6.16 that vertex 3 has a
neighbour coloured a – vertex 7. Since vertex 0 is coloured d, vertex 3 is coloured
with a vertex that is an out-neighbour of a and an in-neighbour of d in T4. The only
such vertices are b and c. However, vertex 0 has a neighbour coloured b (vertex 0 in
a copy of Fx). Therefore, vertex 3 has colour c. Vertex 4 must have a colour that
is an out-neighbour of c in T4. The only such colours are c and d. Since vertex 0,
an out-neighbour of vertex 3, is coloured d, vertex 4 must be coloured c. Vertex 2
must have a colour that is an in-neighbour of c in T4. The only such colours a, b
and c. Vertex 7, an in-neighbour of vertex 3, has colour a. Vertex 4, a neighbour
of vertex 3, has colour c. Therefore, by injectivity vertex 2 has colour b. Vertex 5
must be coloured with a common out-neighbour of b and c in T4. The only such
colours are c and d. Since vertex 3, an out-neighbour of vertex 2, has colour c, we
have by injectivity that vertex 5 has colour d. The in-neighbours of vertex 5 must
be coloured with the in-neighbours of d in T4. Vertex d has three in-neighbours in
T4 – b, c and d. Since vertex 2 has colour b and vertex 4 has colour c, we have by
injectivity that vertex 6 has colour d.

Theorem 6.18. The problem of iot-injective T4-colouring is NP-complete.

Proof. The reduction is from 3-edge-colouring subcubic graphs.

Walks, Transitions and Geometric Distances in Graphs. 173

6.3. Iot-injective homomorphisms

Let G be a graph with maximum degree at most 3 and let G̃ be an arbitrary
orientation of G. We create an oriented graph F from G̃ as follows. For every
v ∈ V (G) we add Fv, a copy of the oriented graph given in Figure 6.13, to F . For
every arc uv ∈ E(G̃), we add Fuv, a copy of the oriented graph given in Figure
6.14, to F . To complete the construction of F , for each arc uv ∈ E(G̃) we identify
the vertex 0 in Fuv with one of the three square vertices (i.e., vertices 1, 2, or 3)
in Fu and identify the vertex 6 in Fuv with one of the three square vertices in Fv .
We identify these vertices in such a way that each square vertex in a copy of Fx is
identified with at most one square vertex from a copy of Fe. We note that this is
always possible as vertices in G have degree at most three.

We claim that G has a 3-edge-colouring if and only if F has an iot-injective
T4-colouring.

Suppose an iot-injective T4-colouring of F is given. This iot-injective T4-colouring
induces a 3-edge-colouring of G: the colour of an edge in uv ∈ E(G) is given by
colour of vertices 0 and 6 in corresponding copy of Fuv contained in F . By Lemma
6.17, this colour is well-defined, and is one of b, c, or d. Recall that for each copy
of Fx, the vertices 1,2 and 3 are respectively each identified with either vertex 0
or vertex 6 in some copy of Fe. By Lemma 6.15, vertices 1, 2 and 3 in a copy of
Fx cannot be coloured a. By injectivity, vertices 1, 2 and 3 in a copy of Fx all are
assigned different colours. Therefore, each of the edges incident with any vertex
receive different colours and no more than 3 colours, namely b, c, and d, are used
on the edges of G. By definition, this induces a 3-edge-colouring of G.

Suppose that a 3-edge-colouring of G, f : E(G) → {b, c, d} is given. For each
uv ∈ E(G), we colour Fuv using one of the iot-injective T4-colourings given in Figure
6.15. We choose the colouring of each Fuv so that vertices 0 and 6 are assigned the
colour f(e).

c

d b b

a c

a d

b c d b

c

(a) The colouring of Fe when
f(e) = b.

c

d b b

a c

a d

c b d c

c

(b) The colouring of Fe when
f(e) = c.

c

d b b

a a

c d

d c b d

a

(c) The colouring of Fe when
f(e) = d.

Figure 6.15

To complete the proof, we show that such colouring can be extended to all copies

174 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

of Fx contained in F . Recall that for each copy of Fx, the vertices 1, 2 and 3 are
all identified with either vertex 0 or vertex 9 of some copy of Fe. Since f is a 3-
edge-colouring of G, for each x ∈ V (G), each of the vertices 1, 2 and 3 in Fx are
coloured with distinct colours from the set {b, c, d} when we colour each copy of Fe

using Figure 6.15.

By symmetry of Hx, we can assume without loss of generality that for all vertex
x, an edge incident to x and coloured b uses the vertex 1, an edge coloured c uses
the vertex 2 and an edge coloured d uses the vertex 3.

The iot-injective T4-colouring given in Figure 6.16 extends a pre-colouring of
the vertices 1, 2 and 3 with colours b, c, and d, respectively, to an iot-injective
T4-colouring of Fx.

a c

a

bb c

d

Figure 6.16: A colouring of Fx.

Thus, F has an iot-injective T4-colouring.

Since the construction of F can be carried out in polynomial time, iot-injective
T4-colouring is NP-complete.

6.3.2 Iot-injective T5-colouring

We now prove the NP-completeness of iot-injective T5-colouring. The reduction is
from iot-injective C3-colouring. We construct an oriented graph D from a graph
G so that G admits an iot-injective homomorphism to C3 if and only if D admits
an iot-injective homomorphism to T5. The key ingredient in the construction is the
oriented graph, Dv, given in Figure 6.17.

0 4 8

93

2

1

7

6

5

Figure 6.17: Dv.

For each n > 0, let Dn be the oriented graph constructed from n disjoint copies
of Dv, say Dv0 ,Dv1 , . . . ,Dvn−1 , by letting vertex 8 of Dvi be an in-neighbour of
vertex 0 in Dvi+1 (mod n) for all i ∈ [[0, n − 1]].

Walks, Transitions and Geometric Distances in Graphs. 175

6.3. Iot-injective homomorphisms

Lemma 6.19.

For any positive integer n, up to automorphism, in an oriented iot-injective T5-
colouring of Dn each of the vertices labelled 0 receive the colour d, each of the vertices
labelled 4 receive the colour a, and each of the vertices labelled 8 receive the colour
c.

Proof. Since T5 is vertex-transitive, assume without loss of generality that vertex 0
inDv0 receives colour d in some iot-injective T5-colouring of Dn. Observe that vertex
4 has three out-neighbours. Since each vertex of T5 has at most three out-neighbours
(including itself), vertex 4 must have the same colour as one of its out-neighbours.
To satisfy the injectivity constraint, no in-neighbour of vertex 4 has the same colour
as vertex 4. Furthermore, vertex 4 has two in-neighbours, vertices 1 and 2, that
are out-neighbours of a vertex coloured d. Only vertices a and b in T5 have two
in-neighbours that are out-neighbours of d. Therefore, vertex 4 has colour a or b.

By way of contradiction, assume that vertex 4 has colour b. Then vertices 1 and
2 are coloured with the vertices of T5 that are out-neighbours of d and in-neighbours
of b. The only such vertices in T5 that satisfy these criteria are a and e. Therefore,
vertices 1 and 2 are coloured with a and e, in some order. Vertex d has three out-
neighbours in T5 – a, d and e. Since vertices 1 and 2 are coloured with a and e, in
some order, the third out-neighbour of vertex 0, vertex 3, is coloured with d. Vertex
b in T5 has three out-neighbours – b, c and d. Therefore, the out-neighbours of vertex
4, vertices 5, 6 and 7, are coloured, in some order, with these colours. Vertices b, c
and d in T5 have only d as a common out-neighbour. Hence, the common out-
neighbour of vertices 5, 6 and 7, vertex 8, is coloured d. This is a contradiction, as
now vertex 9 has two vertices coloured d in its neighbourhood. Therefore, vertex 4
has colour a.

Vertex a in T5 has three out-neighbours – a, b and c. Thus, the out-neighbours
of vertex 4 are coloured with a, b and c, in some order. The only common out-
neighbour of a, b and c in T5 is c. Therefore, vertex 8 has colour c. This implies that
vertex 9 in Dv0 and 0 in Dv1 have colours from the set {c, d, e}, the out-neighbours
of c in T5. Since vertex 8 has a neighbour coloured c, neither vertex 0 in Dv1 nor 9
(in Dv0) can have this colour. Furthermore, since vertex 3 has a neighbour coloured
d, vertex 9 has cannot be coloured d. Thus, vertex 9 in Dv0 has colour e and vertex
0 in Dv1 has colour d.

Repeating this argument implies that every vertex labelled 0 has colour d.

Theorem 6.20. The problem of iot-injective T5-colouring is NP-complete.

Proof. The reduction is from iot-injective C3-colouring.

Let G be an oriented graph with vertex set {v0, v1, . . . , v|V (G)|−1}. Let νG =
|V (G)|. We construct D from G by first adding a copy of DνG to G and then, for
each i ∈ [[0, νG − 1]], adding an arc from vertex 5 in Dvi to vi.

We show that D has an iot-injective T5-colouring if and only if G has an iot-
injective C3-colouring.

Let ϕ be an iot-injective T5-colouring of D. Since T5 is vertex-transitive, we may
assume that vertex 0 in Dv0 has colour d. By Lemma 6.19, for all i ∈ [[0, νG − 1]],
the vertex in Dvi labelled 0 has colour d, the vertex labelled 4 has colour a and the

176 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

vertex labelled 8 has colour c. By the injectivity requirement, the neighbours of the
vertex labelled 5 in each copy of Dv have distinct colours. Since the vertices 4 and
8 have colours a and c, respectively, only colours b, d and e can appear at vi, for all
i ∈ [[0, νG − 1]]. Since b, d and e induce a copy of C3 in T5, we conclude that the
restriction of ϕ to the vertices of G is indeed an iot-injective C3-colouring.

Let β be an iot-injective C3-colouring of G using colours b, d and e.We extend
such a colouring to be an iot-injective T5-colouring of D by assigning to the vertices
of each Dvi colours based upon β(vi) as shown in Figure 6.18.

c

e

d a c

ea

e

d

c

b

a

b
vi

d

Dvi−1 Dvi+1

G

(a) A colouring of Dvi when β(vi) = b.

c

e

d a c

ea

e

d

a

b

c

d
vi

d

Dvi−1 Dvi+1

G

(b) A colouring of Dvi when β(vi) = d.

c

e

d a c

ea

e

d

a

b

c

e
vi

d

Dvi−1 Dvi+1

G

(c) A colouring of Dvi when β(vi) = e.

Figure 6.18

Note that vertex 5 of Dvi is always coloured either a or c. Since the other
neighbours of vi are vertices of G which are thus coloured b, d or e, this colouring
observes the injectivity requirement.

Walks, Transitions and Geometric Distances in Graphs. 177

6.3. Iot-injective homomorphisms

Therefore, D has an iot-injective T5-colouring if and only if G has an iot-injective
C3-colouring. As D can be constructed in polynomial time, iot-injective T5-colouring
is NP-complete.

6.3.3 Dichotomy theorem

We now present a reduction to instances of iot-injective T -colouring for when T has
a vertex v of out-degree at least four. This reduction allows us to polynomially
transform an instance of iot-injective T -colouring to an instance of iot-injective T ′-
colouring, where T ′ is T4, T5, C3 or TT3.

Lemma 6.21. If T is a reflexive tournament on n vertices with a vertex v of out-
degree at least four, then iot-injective homomorphism to T ′ polynomially transforms
to iot-injective homomorphism to T , where T ′ is the tournament induced by the strict
out-neighbourhood of v.

Proof. Let T be a reflexive tournament on n vertices with a fixed vertex v of out-
degree four or more. Let T ⋆ be the graph obtained by removing from T all the arcs
with their tail at v.

Let G be an oriented graph with vertex set {w0, w1, . . . , w|V (G)|−1}. Let νG =
|V (G)|. We construct C from G by adding to G

• νG disjoint irreflexive copies of T : T0, T1, . . . , TνG−1;

• νG disjoint irreflexive copies of T ⋆ : T ⋆
0 , T

⋆
1 , . . . , T

⋆
νG−1;

• and for all u ∈ V (T) where u 6= v, an arc from the vertex corresponding to u
in T ⋆

i−1 to the vertex corresponding to u in Ti, for all i ∈ [[0, νG − 1]].

Let vi and v⋆i be the vertices corresponding to v in Ti and T ⋆
i , respectively. We

complete the construction of C by adding an arc from vi to v⋆i for all i ∈ [[0, νG− 1]].
This construction is illustrated in Figure 6.19.

vi v⋆i

wi
G

T ⋆
i−1 Ti T ⋆

i Ti+1

Figure 6.19: The construction of C in Lemma 6.21.

We first need to prove a few preliminary results.

178 Thomas Bellitto

6. Complexity of locally-injective homomorphisms to tournaments

Proposition 6.22.
In an iot-injective T -colouring of C, no two vertices of Ti have the same colour.

Proof. If two vertices of Ti are assigned the same colour, then a common neighbour of
such vertices in Ti has a pair of neighbours with the same colour. This is a violation
of the injectivity requirement. Therefore, no two vertices of Ti are assigned the same
colour.

Proposition 6.23.

In an iot-injective T -colouring of C, vi and v⋆i have the same colour.

Proof. Since vi has n neighbours, in any iot-injectve T -colouring of C, vi is assigned
the same colour as one of its neighbours. By the previous claim, the neighbour of vi
that has the same colour as vi must be v⋆i .

Proposition 6.24.
In an iot-injective T -colouring of C, vi and vi+1 have the same colour.

Proof. If v has out-degree n in T , then, by construction, vi and vi+1 each have
out-degree n in C. Since no two out-neighbours of any vertex can receive the same
colour, and since there can be at most one vertex of out-degree n in T , it must be
that vi and vi+1 have colour v.

Otherwise, v has at least one strict in-neighbour distinct from itself, say y, in T .
Let y⋆i be the vertex corresponding to y in T ⋆

i . Let ui+1 be a vertex in Ti+1 \{vi+1},
and let u⋆i be the vertex of T ⋆

i which has ui+1 as an out-neighbour. By the first
claim, no two vertices in Ti+1 share a colour, and since ui+1 has n− 1 neighbours in
Ti+1, it must be that ui+1 and u⋆i share a colour. This implies that no two vertices
of T ⋆

i \ {v⋆i } have the same colour, and the colours used to colour T ⋆
i \ {v⋆i } are

the same colours as those used to colour Ti+1 \ {vi+1}. The vertex y⋆i has v⋆i as an
out-neighbour, and each colour except the colour of vi+1 is used to colour a vertex
distinct from v⋆i which is a neighbour of y⋆i . Therefore, v

⋆
i must have the same colour

as vi+1. The result now follows from Proposition 6.23.

Let T ′ be the reflexive tournament induced by the strict out-neighbourhood of v.
We show that G has an iot-injective T ′-colouring if and only if C has an iot-injective
T -colouring.

Let ϕ be an iot-injective T -colouring of C. Since all the vertices of Ti are assigned
distinct colours, vi must be coloured with a vertex in the same orbit as v in T . We
can assume without loss of generality that ϕ(v0) = v and thus, by Proposition 6.24,
∀i ∈ [[1, νG − 1]], ϕ(v⋆i) = ϕ(vi) = v.

For all i ∈ [[1, νG−1]] , since wi is an out-neighbour of v⋆i , ϕ(wi) must be contained
in the out-neighbourhood of v in T . Hence, ∀i ∈ [[1, νG − 1]], ϕ(wi) ∈ V (T ′). The
restriction of ϕ to G is therefore an iot-injective homomorphism to T ′.

Conversely, let β be an iot-injective T ′-colouring of G. We extend β to be
an iot-injective T -colouring of C as follows. For each z ∈ V (T), let zi and z⋆i
be the corresponding vertices in Ti and T ⋆

i , respectively. We extend β so that
β(zi) = β(z⋆i) = z. It is easily verified that β is an iot-injective T -colouring of
C.

Walks, Transitions and Geometric Distances in Graphs. 179

6.4. Conclusion

The construction of C can be modified to give the corresponding result for re-
flexive tournaments T with a vertex of in-degree at least four.

Lemma 6.25. If T is a reflexive tournament on n vertices with a vertex v of in-
degree at least four, then iot-injective homomorphism to T ′ polynomially transforms
to iot-injective homomorphism to T , where T ′ is the tournament induced by the strict
in-neighbourhood of v.

Similar to the case of ios-injective colouring, our results compile to give a di-
chotomy theorem.

Theorem 6.26.
Let T be a reflexive tournament. If T has at least 3 vertices, then the problem of

deciding whether a given oriented graph G has an iot-injective homomorphism to T
is NP-complete. If T has 1 or 2 vertices, then the problem is Polynomial.

6.4 Conclusion

In this chapter, we have studied and established dichotomy theorems for the com-
plexity of locally-injective homomorphisms under two definitions of local injectivity,
in the case when the target is a reflexive tournament. Our results also imply a
dichotomy theorem for the complexity of ios- and iot- injective k-colouring:

Theorem 6.27. Ios- and iot-injective k-colouring of directed graphs is NP-complete
if k > 3 and polynomial otherwise.

Possible continuations of this work are discussed in Section 7.4.

180 Thomas Bellitto

Chapter 7

Conclusion and further work

This chapter gives a brief overview of the main results of this thesis and presents
some of the open problems that they raise. This chapter aims at giving ideas of
directions for future reserach.

Contents

7.1 Separation on languages and traffic monitoring 181

7.2 Minimum connecting transition sets 184

7.3 Sets avoiding distance 1 185

7.4 Locally-injective directed homomorphisms 188

7.1 Separation on languages and traffic monitoring

Chapter 2 focuses on the problem of traffic monitoring. In Section 2.3, we introduced
a new model of separation based on languages that allows to study traffic monitoring
with tools coming from the theory of separating codes, such as separating sets, and
language theory such as regular expressions.

We then highlighted several subproblems (Sections 2.4, 2.5 and 2.6) that are
relevant for practical applications and used the model we developed in the begin-
ning of the chapter to outline algorithms to address these problems. We notably
established a reduction theorem (Theorem 2.31) that allows to solve the problem on
specific infinite instances.

This study and the notions we introduced raise many open problems that could
be at the core of future work. We present some of them in the rest of this section.

7.1.1 Reducible languages

We saw in Section 2.5 and 2.6 that the reduction theorem (Theorem 2.31) holds for
reachable languages and even for the more general class of FTG-reachable languages,
but it also holds for other languages that do not belong to those classes, such as for
example all the finite languages (the theorem is obvious since finite languages are
equal to their restriction). However, it does not hold for the more general class of
rational languages. For example, L = (ab)∗ + ababa is a rational language but is

181

7.1. Separation on languages and traffic monitoring

neither FTG-reachable nor reachable. Indeed, we proved in the proof of Proposition
2.14 that a language that contains ababa and satisfies Lemma 2.13 has to contain
aba and abababa. A restriction of L is L = ε+ ab+ abab+ ababa. One can see that
the alphabet A′ = {a} separates L. However, both ababa and ababab belong to L
and have the same image under p{a}.

Thus, natural questions are to determine which languages satisfy the reduction
theorem and how to separate infinite languages that do not.

Rational languages can be infinite because their definition uses the Kleene star
that denotes an infinite sum. The restriction that we presented in Definition 2.15
consists of truncating all the infinite sums at k = 2. A natural generalization of the
restriction follows:

Definition 7.1. k-restriction of a rational language:
Given a regular expression of a rational language L, we define a k-restriction of

L and we denote by L the language built inductively as follows:

• ∅ = ∅

• ∀a ∈ A∗, {a} = {a}

• L1 + L2 = L1 + L2

• L1L2 = L1 L2

• L∗ =

k∑

i=0

Lk

Definition 7.2. k-reducibility:
A language L ∈ A∗ is k-reducible if and only if for every k-restriction L of L, the

subalphabets C ⊂ A that separate L are exactly those that separate L.

An alternative statement of Theorem 2.22 and 2.31 is that reachable and FTG-
reachable languages are 2-reducible.

At the end of Subsection 2.2.2, we showed that separating the elementary cycles
starting on the vertex u in the graph depicted in Figure 2.2 was not enough to
separate all the cycles starting on u. This proves that reachable languages and
therefore the more general class of FTG-reachable languages are not 1-reducible
since the set of elementary cycles is a 1-restriction of the set of the cycles on u (see
Example 2.23 for a description of this language).

The language L = (ab)∗+ababa that we used to prove that the reduction theorem
does not hold for rational languages is actually 3-reducible. However, for all k ∈ N,
the language (ab)∗ + (ab)ka is rational and not k-reducible which proves that our
generalization of reduction is not strong enough to deal with rational languages.

This generalization may however be useful to deal with a generalization of FTGs
where we can forbid a given set of subwalks. This problem is more general since
forbidden transitions are simply forbidden subwalks of length 2. Forbidden walks
of length 2 are the ones that make the most sense in regards to the highway code
but forbidding longer subwalks can probably help discard walks that, while not
forbidden, are very unlikely in practice.

182 Thomas Bellitto

7. Conclusion and further work

The reduction theorem does not hold on graphs with forbidden subwalks. For
example, let G = (V,A) be the graph depicted in Figure 7.1a and let the walks ac,
abc and abbc be forbidden. The set of permitted walks leading from u or v to w is
L = ab3b∗c+ b∗c. Its reduction is c+ bc+ bbc+ ab3c+ ab4c+ ab5c and is separated
by C = {b}. However, the words abbbc and bbbc both denote walks from a starting
point to a destination and have the same projection on C. Here, the language L is
3-reducible but we can build counter-examples for any k. Indeed, let k ∈ N, the
language of walks from u or v to w that do not contain any of the walks abic with
i 6 k is not k-reducible.

u v w

b

a c

(a)

u v w

x

a d

b c

(b)

Figure 7.1: Examples of graph with forbidden subwalks that are not 2-reducible.

However, if the set of forbidden walks is finite, there exists k such that no for-
bidden walk has length strictly greater than k. In this case, there may exist ℓ ∈ N

such that W is ℓ-reducible and determining such values of ℓ would help reduce the
separation problem to a finite language.

Conjecture 7.3. There exists a function f in O(k) such that all the languages that
denote sets of walks leading from a starting point to a destination in a graph with
forbidden subwalks of length 6 k are f(k)-reducible.

For example, if k = 2, Theorem 2.31 states that the language is 2-reducible. The
above example proves that f(k) > k + 1.

Finally, we would like to point out that constraints on the graph may allow
to decrease the function f and therefore to reduce the problem to separation on a
smaller language. For example, if the graph we work on is irreflexive, our counter-
example depicted in Figure 7.1a does not work. In Figure 7.1b, if we forbid the
subwalks a(bc)id for i 6 k, the set of walks leading from u or v to w is not k-
reducible but we use forbidden walks of length 2k + 2 (instead of k + 2 in the
reflexive case). Hence, in this case, we only know that f(k) > k/2. We do not know
if this counter-example is minimal.

Graphs with forbidden subpaths have also been studied for their applications
in optical networks in [1]. Here again, our previous counter-examples do not work
since the forbidden walks we use are not elementary. Thus, the function f may also
be smaller in this case than in the general case.

Determining how to reduce separation on an infinite language to a finite language
as small as possible is an interesting language theory problem and could be useful
in the practical applications of traffic monitoring. This is probably a very wide area

Walks, Transitions and Geometric Distances in Graphs. 183

7.2. Minimum connecting transition sets

to explore since there are undoubtedly different models that we can take advantage
of differently.

7.1.2 Planar instances

A strong property of the graphs that arise from the modelling of road networks is
that they are planar or at the very least, can be embedded in the plane with very
few crossing edges. Furthermore, note that if we can forbid transitions, if two edges
cross, we can get back to a planar graph by adding only one vertex as illustrated
in Figure 7.2. The study we present in this Chapter does not make any hypothesis
on the planarity of our instances but planarity has already been used to design
efficient algorithms for problems that share similarities with traffic monitoring. For
example, in [13], Bonamy et al. present the notion of connectivity patterns and
use them to design a dynamic programming algorithm for feedback vertex sets in
directed planar graphs. A feedback vertex set is a set of vertex such that every
directed cycle contains at least one vertex of the feedback vertex set. Notice that
a necessary condition on a solution of complete traffic monitoring is to monitor at
least one arc in each cycle that can be reached from a starting point and from which
a destination can be reached (otherwise, we cannot keep track of how many times
the object walking in the graph has used this cycle). Works like this one could be
an interesting starting point to study traffic monitoring on planar instances.

w

x

u

v

(a) A graph with crossing edges.

w

x

u

v

y

(b) A planar graph with a similar set of
possible walks.

Figure 7.2

Other important topics for future work include the study of the ILP our reduc-
tion leads to and divide-and-conquer algorithms, that could drastically decrease the
computation time and lead to good approximations, especially on planar instances.

7.2 Minimum connecting transition sets

In Chapter 3, we studied the problem of Minimum Connecting Transition Set in
undirected graphs. We introduce a reformulation of the problem that helped design
a polynomial 3

2 -approximation and prove the NP-completeness of the problem. The
rest of this section presents potential directions of future research.

184 Thomas Bellitto

7. Conclusion and further work

7.2.1 Sparse graphs

Our results suggest that the density of the graph has an impact on the complexity
of MCTS. We know for example that the problem is trivial in trees (Lemma 3.2)
and more generally, in graphs with cut vertices (Proposition 3.13). Similarly, our
counter-examples to the tightness of the bound presented in Theorem 3.5 and our
proof of NP-completeness involve very dense graphs. Consequently, it would be
interesting to study the complexity of this problem on sparser graphs such as planar
graphs or graphs with bounded maximum average degree, which generalize planar
graphs. Since the problem is easy on trees, we could also study the case of graph
with bounded treewidth or try to design general algorithm parametrized by the
treewidth of the graph.

7.2.2 Stretch of the solution

Another interesting continuation of this work would also be the study of low-stretch
connecting transition sets, a problem that is already well-studied for minimum span-
ning trees [95]. Intuitively, it consists on looking for a subset of transitions T such
that the shortest T -compatible path between two vertices is not much longer than
the shortest path with no forbidden transitions, which is also an important criteria
of robustness.

If G is a tree, the construction we exhibited in the proof of Lemma 3.2 achieves
a worst-case stretch of 3 if we pick f(v) arbitrarily. Indeed, if the shortest walk
between u and v is (u, u1, u2, . . . , uk, v) and uses none of the f(ui), the short-
est T -compatible path with T = {uvf(v) : v ∈ V (G), u ∈ N(v) \ {f(v)}} is
(u, u1, f(u1), u1, u2, f(u2), u2, . . . , uk, f(uk), uk, v) and has length 3k + 1 instead of
k + 1. However, let us pick a root r in the tree and let f(v) be the parent of v
for v 6= r and any neighbour of r if v = r. Let u and v be vertices of G and let
w be their first common ancestor. The shortest path between u and v in G is the
concatenation of the path between u and w and the path between w and v, let ℓ
be its length. Note that the concatenation of the path between u and w, of the
path (w, f(w), w) and of the path between w and v is T -compatible and has length
ℓ+ 2. Hence, there exist minimum connecting transition sets of asymptotic stretch
1 on trees and we can combine this with minimum-stretch spanning tree to obtain a
heuristic in general graphs but it is not known whether this construction is optimal.

In the general case, the construction in the proof of Lemma 3.2 provides a con-
necting transition set of stretch 3 but of size 2|E(G)| − |V (G)|, which is not neces-
sarily minimum.

Another expected continuation of this work is to study MCTS in directed
graphs, which are more suitable for many practical applications.

7.3 Sets avoiding distance 1

In Chapters 4 and 5, we studied the density of sets avoiding distance 1 and developed
methods based on the independence ratio of infinite graphs or of optimally weighted
finite graphs to establish bounds on m1 in different normed spaces. Our main results

Walks, Transitions and Geometric Distances in Graphs. 185

7.3. Sets avoiding distance 1

are the proof of the Bachoc-Robins conjecture in dimension 2 (Theorem 4.23) and
for a class of polytopes of unbounded dimension (Theorem 4.24), a bound of the
order O(1

2n) for another infinite class (Theorem 4.28), the best known upper bound
on m1(R

2) (Theorem 5.13), the best known lower bound on χf (R
2) (Theorem 5.14)

and bounds on m1(R
3, ‖ · ‖P) for any regular parallelohedron P (Theorem 5.24).

This project is still ongoing are there are a lot of open problems to explore. We
present some of them in this section.

7.3.1 The Euclidean plane and Erdős’ conjecture

De Grey’s proof of the existence of a 5-chromatic graph has many implications for our
method and problem. Indeed, the existence of 5-chromatic graph makes it plausible
to find graphs of optimal weighted independence ratio strictly smaller than 1

4 and
to prove Erdős’ conjecture. However, the first 5-chromatic graph exhibited by De
Grey had more than 20.000 vertices and is clearly out of reach of our algorithm.
Considerable efforts have since been made by many mathematicians to find smaller
5-chromatic graphs and this problem is notably at the core of the collaborative math
project Polymath16. The current smallest known 5-chromatic subgraph of G(R2)
was found by Marijn Heule and has 610 vertices. However, if a 5-chromatic graph
is minimal, this means that removing any of its vertex, even the one of smallest
weight, makes the graph 4-chromatic again and thus, that all its other vertices can
be partitioned into 4 independent sets. Such graphs are extremely unlikely to have
optimal weighted independence ratio smaller than 1

4 . So far, all the subgraphs of
G(R2) that have provided interesting results for our problems were 4-chromatic.

Improving our results will probably require a deep understanding of G(R2) and
of the optimal weighted independence ratio to find ways to adapt to our problem
the ideas that have emerged recently to design graphs of small chromatic number.

Another important problem would be to develop tools to find bounds other than
computationally. Indeed, even if there may exist subgraphs of G(R2) of optimal
weighted independence ratio smaller than 1

4 , we do not know their size and even
the smallest of them might very well be far beyond the reach of our algorithms.
For example, future works could investigate how to derive non-trivial bounds on
the optimal weighted independence ratio of large graphs from those of some of its
subgraphs.

7.3.2 Parallelohedra and Bachoc-Robins’ conjecture

Now that we have proved the conjecture of Bachoc-Robins in dimension 2, the next
natural step is the study of dimension 3. The conjecture is now solved for every
regular 3-dimensional parallelohedron except the truncated octahedron, for which
bounds are presented in this thesis. However, the only non-regular 3-dimensional
parallelohedra for which the conjecture is solved are the cuboid (implied by Example
4.14) and the hexagonal prism [92]. The 3 remainings are, in increasing order of
difficulty, the rhombic dodecahedron, the elongated dodecahedron and finally, the
truncated octahedron, which generalizes every 3-dimensional parallelohedron.

Our study of Λ-classes, of k-regular independent sets and our algorithm to com-
pute the optimal weighted independence ratio of graphs still work well in the case

186 Thomas Bellitto

7. Conclusion and further work

of norms induced by irregular parallelohedra but our construction of the infinite
discrete graph G is not straightforward to generalize to the irregular truncated oc-
tahedron.

Indeed, in the case of the regular truncated octahedron P, the set of vectors
between the center of P and the centers of its square faces are exactly the set
of vectors between the opposite vertices of a square face (these vectors are the
permutation of (−2,−2, 2, 2)). Hence, if two vertices v and v′ are opposite vertices
of a square face, v − v′ ∈ 1

2Λ and thus, v + 1
2Λ = v′ + 1

2Λ. For example, if we define
V 32 = (VP ∪ {0}) + 1

2Λ like we did in Subsection 5.4.4, the vertex v of coordinates
(-3,-1,1,3) belongs to V 32 both as a vertex of P and as the translate of another
vertex of P (the vertex of coordinates (-1,-3,3,1)) by the vector (−2, 2,−2, 2) ∈ 1

2Λ.
However, in the irregular case, those two definitions of v are not equivalent anymore,
which increases the number of vertices and of Λ-classes in the graph and make
their distribution less homogeneous (the maximum number of Λ-classes that an
independent set may contain is no longer one eighth of the total number of Λ-
classes).

We avoid this problem by partitioning the vertices of P in 3 (12Λ)-classes (two
opposite vertices of a square face belong to different Λ-classes but to the same 1

2Λ-
class) and by picking only one Λ-class in each of them. We call V ′

P the union of
the three chosen Λ-classes and we define our vertex set as V 32 = (V ′

P ∪ {0}) + 1
2Λ.

By replacing VP by V ′
P , we can also generalize the definition of the vertex sets V 64,

V 128 which are the most interesting to us.

Building a vertex set by selecting all the vertices at a given distance from the
origin was useful in Algorithm 3 and in the proof of Theorem 5.24 but here again,
it can only be done in the case of a regular parallelohedron. Indeed, the distance
between all the vertices of our graph is easy to determine in the case of the regular
parallelohedron but it cannot be done in the general case. For example, we know
that the edges of a regular truncated octahedron all have length 2

3 for the distance
it induces but in the general case, the length of the edges can be anywhere between
0 and 2. However, our generalization of the construction of V 64 and V 128 makes it
easy to define an isomorphism f between the vertex set V we build in the regular
case and the vertex set V ′ we build in the general case. While we do not know which
vertices of V ′ are at distance smaller than d from 0, we can still define V ′

d as the
image by f of the vertices of Vd.

However, the unit-distance subgraph that we build in the irregular case have
much fewer edges and the bounds we obtain on their independence ratio are far
from as good as in the regular case. Proving the conjecture of Bachoc-Robins for
general 3-dimensional parallelohedra or even for the regular truncated octahedron
seems out of reach of our current algorithm but a more reasonable objective could be
to establish an upper bound smaller than 1

7 , which would prove that the chromatic
number of the space equipped by any parallelohedron norm is 8.

7.3.3 Power and limitation of weighted subgraphs

Another interesting topic to study would be the bound we can achieve onm1 with the
independence ratio of unweighted and weighted graphs. For example, in the case of

Walks, Transitions and Geometric Distances in Graphs. 187

7.4. Locally-injective directed homomorphisms

the regular hexagon, we know a finite weighted graph of independence ratio 1
4 (Figure

5.17) but we do not know if this bound can be reached by an unweighted graph.
Similarly, there are several parallelohedra for which we do not know if the bound
of 1

2n can be reached by finite graphs, even with a weighting. These parallelohedra
include the irregular hexagon for which we know that the Bachoc-Robins conjecture
holds. Our proofs of Theorems 4.15 and 4.19 suggest that we could find finite graphs
of independence ratio arbitrarily close to 1

4 but do not imply that these bounds can
be reached.

We currently have very few tools to prove that such graphs do not exist. A
first step would be to answer those questions for a given discrete infinite graph G:
we investigate the existence of finite subgraphs H of G whose independence ratio
reaches 1

2n . For example, in Subsection 5.4.1, in the case of the regular hexagon, we
looked for properties that a weighted subgraph H of the graph G depicted in Figure
4.7 had to observe to have independence ratio 1

4 . We saw that if there exist classes
C and C ′ of a same coset (see Figure 5.18) such that an independent set in C ∪ C ′

has higher weight than C or C ′, we can build a 2-regular independent set of weight
ratio greater than 1

4 . This implies that in a graph of independence ratio 1
4 , no subset

c of C can be heavier than its neighbourhood in C ′ since C ′ \N [c]∪c is independent.
This property can be satisfied by small weighted graphs but is a strong constraint
in the unweighted case. We also recall that all the classes of a same coset must
have same weight and thus, in the unweighted case, same cardinality. Still, we were
able to build unweighted subgraph of G that observes this constraint (for example,
a graph where all three cosets induce the graph depicted in Figure 7.3) but they all
had independence ratio much higher than 1

4 , even if it could only be reached by at
most 1-regular set.

Figure 7.3: The colours denote the Λ-classes of a same coset and the edges denote
geometric distance 1. All the Λ-classes have 6 vertices and no independent set on
the union of two classes has size more than 6.

In the case of the irregular hexagon, the requirement is even stronger: we saw in
Example 5.23 that no independent set on c8∪c10∪c12 can have a higher weight than
one of these three classes. As mentioned previously, we do not know if the bound
of 1

4 for the irregular hexagon can be reached by finite weighted graphs. The best
bound we have reached so far with finite graphs is 0.250951 with a graph of size 487.

7.4 Locally-injective directed homomorphisms

In Chapter 6, we established dichotomy theorems for the complexity of locally-
injective homomorphisms to reflexive tournaments, for two definitions of local injec-

188 Thomas Bellitto

7. Conclusion and further work

tivity, namely ios- and iot-injectivity. These theorems imply a dichotomy theorem
for the complexity of the associated colouring problems. A long-term objective
would be to establish a dichotomy theorem for the complexity of locally-injective
homomorphism to any directed graphs and starting with complete targets is often
a good starting point because of the diversity of the configuration it involves. For
example, in the case of homomorphism to undirected graph, the dichotomy theorem
established by Hell and Nešetřil ([61], see Theorem 6.3) depends entirely on the
colourability of the target of the homomorphism.

A more immediate goal would be to study of the complexity of locally-injective
homomorphism to irreflexive tournaments, for which ios- and iot-injectivity are
equivalent since neither in- nor out-neighbours of a vertex v can have the same
colour as v. For example, if we try to colour the graph of Example 6.2 with an
irreflexive tournament, we notice that five colours are necessary since |N [v1]| = 5
and sufficient, as illustrated in Figure 7.4.

v0 v1

v4

v3

v2

v5

(a) A 5-irreflexive-injective colouring of G. (b) An associated target tournament.

Figure 7.4

The results of [20, 19] tell us that the problem is not only Polynomial for the
irreflexive tournaments on two vertices or less but also for the irreflexive tournaments
on three vertices.

Furthermore, we were able to prove that locally-injective homomorphism is also
polynomial to two of the four irreflexive tournaments on four vertices, namely, T4

and the transitive tournament TT4 (see Figure 7.5). However, we proved that the
problem is NP-complete on the two other, which consist respectively of an oriented
cycle of length 3 with a dominating vertex, and an oriented cycle of length 3 with
a dominated vertex (see Figure 7.6). Our preliminary work on this matter also
allows us to establish the NP-completeness of locally-injective homomorphism to
several other irreflexive tournaments, including at least ten of the twelve irreflexive
tournaments on five vertices. The problem has not been proven polynomial on
any irreflexive tournament on five vertices or more, which lead us to the following
conjecture:

Conjecture 7.4.
Locally-injective homomorphism is polynomial to irreflexive tournament on 3

vertices or less as well as to the irreflexive version of T4 and TT4 (see Figure 7.5)
and NP-complete on the two other irreflexive tournament on four vertices (see Figure
7.6) as well as to every irreflexive tournament on 5 vertices or more.

Walks, Transitions and Geometric Distances in Graphs. 189

7.4. Locally-injective directed homomorphisms

(a) TT4. (b) T4.

Figure 7.5: Locally-injective homomorphism to these two tournaments is polynomial.

(a) This tournament consists of an induced
C3 and a dominating vertex.

(b) This tournament consists of an induced
C3 and a dominated vertex.

Figure 7.6: Locally-injective homomorphism to these two tournaments is NP-
complete.

For now, no equivalent of Lemma 6.10 or 6.21 has emerged that could help
us establish a dichotomy theorem on the infinitely many irreflexive tournaments.
However, even the equivalent of such a theorem would not be sufficient to prove
Conjecture 7.4.

Indeed, in our dichotomy Theorems 6.14 and 6.26, the set SNP−C of reflexive
tournaments to which locally-injective homomorphism is NP-complete problem are
the tournaments on three vertices or more. Our proof works by induction where we
define SNP−C as C3, TT3, T4, T5 (Figure 6.3, 6.4 and 6.9) or tournaments that have a
vertex whose open in- or out-neighbourhood induces another tournament of SNP−C.
This definition involves 4 base cases for which we were able to prove case-by-case
that the problem is NP-complete (see Theorem 6.4 [19], Theorems 6.7, 6.9, 6.18 and
6.20).

In the case of an irreflexive target, an equivalent of Lemma 6.10 or 6.21 would
leave us to deal with all the tournaments that have no vertex whose open in- or out-
neighbourhood has size five or induces one of the tournaments depicted in Figure 7.6.
This includes many tournaments since this description is satisfied by tournaments
of size up to 9 and the number of tournaments on n vertices increases extremely fast
(there are 4 tournaments on 4 vertices, 12 on 5 vertices,... 191,536 on 9 vertices).
Extending our dichotomy theorems to irreflexive tournaments will require finding
new techniques of proof and would be an interesting continuation of this work.

190 Thomas Bellitto

Appendix A

Computational bound in the
Euclidean plane

This appendix describes our subgraphG of G(R2) that achieves the bound of α∗(G) 6
0.256828 announced in Theorem 5.13.

Our starting point is a graph W introduced by De Grey as an intermediate graph
toward his construction of a 5-chromatic subgraph of G(R2) (see Figure 8 in [34]).
This graph has 301 vertices, 1230 edges and was useful to De Grey because of the
restrictive properties that 4-colourings of W must observe. While those properties
are not directly important to us, the low number of optimal colourings is because it
makes it easier to find weightings that balance the colour classes in all of them.

We then iterated on W the processes of optimization of the weighting, removal
of the vertices of lowest weight and combination of the resulting graph with copy of
itself that we described in Subsection 5.3.3.

The last step of our construction was the combination of six copies of an inter-
mediate graph of 282 vertices obtained by rotating the graph of kπ

3 for k ∈ [[0, 5]]
around the point of coordinate (1,0). This implies that the final graph is invariant
by rotation of kπ

3 around (1,0). Thus, even though it has 487 vertices, we can de-
scribe it by giving only the coordinates of the 82 vertices x such that x− (1, 0) has
polar angle in [0, π3 [. Hence, the entire vertex set of the graph can be generated by

rotating those vertices. The coordinates of our vertices are elements of Q[
√
3][

√
11].

For simplicity, we denote by (a, b, c, d) the number a + b
√
3 + c

√
11 + d

√
33. The

vertices are:

((12 , 0, 0,
1
6), (0,

1
3 , 0, 0)), ((

3
4 , 0, 0,

1
12), (0, −1

4 ,
1
4 , 0)), ((

3
4 , 0, 0,

1
12), (0,

7
12 , −1

4 ,
0)), ((1112 , 0, 0,

1
12), (0,

1
12 ,

1
12 , 0)), ((1, 0, 0, 0), (0, 0, 0, 0)), ((1, 0, 0,

1
6), (0,

1
6 , 0,

0)), ((1, 0, 0, 1
6), (0,

1
2 , 0, 0)), ((1, 0, 0,

1
6), (0,

5
6 , 0, 0)), ((

5
4 , 0, 0,

1
12), (0, − 5

12 ,
1
4 ,

0)), ((54 , 0, 0,
1
12), (0, − 1

12 ,
1
4 , 0)), ((

5
4 , 0, 0,

1
12), (0,

1
4 ,

1
4 , 0)), ((

5
4 , 0, 0,

1
12), (0,

3
4 ,

−1
4 , 0)), ((

5
4 , 0, 0,

1
12), (0,

13
12 , −1

4 , 0)), ((
17
12 , 0, 0,

1
12), (0,

7
12 ,

1
12 , 0)), ((

3
2 , 0, 0, 0),

(0, 1
6 , 0, 0)), ((

3
2 , 0, 0, 0), (0,

1
2 , 0, 0)), ((

3
2 , 0, 0,

1
6), (0,

1
3 , 0, 0)), ((

3
2 , 0, 0,

1
6), (0,

2
3 , 0, 0)), ((

3
2 , 0, 0,

1
6), (0, 1, 0, 0)), ((

19
12 , 0, 0,

1
12), (0,

7
12 , − 1

12 , 0)), ((
5
3 , 0, 0, 0), (0,

1
2 , −1

6 , 0)), ((
7
4 , 0, 0, − 1

12), (0, − 5
12 ,

1
4 , 0)), ((

7
4 , 0, 0, − 1

12), (0,
3
4 , −1

4 , 0)), ((
7
4 , 0,

0, 1
12), (0, −1

4 ,
1
4 , 0)), ((

7
4 , 0, 0,

1
12), (0,

1
12 ,

1
4 , 0)), ((

7
4 , 0, 0,

1
12), (0,

5
12 ,

1
4 , 0)), ((

7
4 ,

0, 0, 1
12), (0,

7
12 , −1

4 , 0)), ((
7
4 , 0, 0,

1
12), (0,

3
4 ,

1
4 , 0)), ((

7
4 , 0, 0,

1
12), (0,

11
12 , −1

4 , 0)),

191

((116 , 0, 0, 0), (0, 0,
1
6 , 0)), ((

23
12 , 0, 0, − 1

12), (0, − 1
12 ,

1
12 , 0)), ((

23
12 , 0, 0,

1
12), (0,

1
12 ,

1
12 , 0)), ((

23
12 , 0, 0,

1
12), (0,

13
12 ,

1
12 , 0)), ((2, 0, 0, 0), (0,

1
3 , 0, 0)), ((2, 0, 0, 0), (0,

2
3 ,

0, 0)), ((2, 0, 0, 0), (0, 1, 0, 0)), ((2, 0, 0, 1
6), (0,

1
6 , 0, 0)), ((2, 0, 0,

1
6), (0,

1
2 , 0, 0)),

((2, 0, 0, 1
6), (0,

5
6 , 0, 0)), ((2, 0, 0,

1
6), (0,

7
6 , 0, 0)), ((

13
6 , 0, 0, 0), (0, 1, −1

6 , 0)), ((
9
4 ,

0, 0, − 1
12), (0, −1

4 ,
1
4 , 0)), ((

9
4 , 0, 0, − 1

12), (0,
1
12 ,

1
4 , 0)), ((

9
4 , 0, 0, − 1

12), (0,
7
12 , −1

4 ,
0)), ((94 , 0, 0, − 1

12), (0,
11
12 , −1

4 , 0)), ((
9
4 , 0, 0,

1
12), (0, − 5

12 ,
1
4 , 0)), ((

9
4 , 0, 0,

1
12), (0,

− 1
12 ,

1
4 , 0)), ((

9
4 , 0, 0,

1
12), (0,

1
4 ,

1
4 , 0)), ((

9
4 , 0, 0,

1
12), (0,

7
12 ,

1
4 , 0)), ((

9
4 , 0, 0,

1
12),

(0, 3
4 , −1

4 , 0)), ((
9
4 , 0, 0,

1
12), (0,

11
12 ,

1
4 , 0)), ((

9
4 , 0, 0,

1
12), (0,

13
12 , −1

4 , 0)), ((
7
3 , 0, 0,

0), (0, 1
2 ,

1
6 , 0)), ((

29
12 , 0, 0, − 1

12), (0,
5
12 ,

1
12 , 0)), ((

29
12 , 0, 0,

1
12), (0,

7
12 ,

1
12 , 0)), ((

5
2 ,

0, 0, −1
6), (0,

1
3 , 0, 0)), ((

5
2 , 0, 0, 0), (0,

1
6 , 0, 0)), ((

5
2 , 0, 0, 0), (0,

1
2 , 0, 0)), ((

5
2 , 0,

0, 0), (0, 5
6 , 0, 0)), ((

5
2 , 0, 0,

1
6), (0,

1
3 , 0, 0)), ((

5
2 , 0, 0,

1
6), (0,

2
3 , 0, 0)), ((

31
12 , 0, 0,

− 1
12), (0,

5
12 , − 1

12 , 0)), ((
31
12 , 0, 0,

1
12), (0,

7
12 , − 1

12 , 0)), ((
8
3 , 0, 0, 0), (0,

1
2 , −1

6 , 0)),
((114 , 0, 0, − 1

12), (0, − 5
12 ,

1
4 , 0)), ((

11
4 , 0, 0, − 1

12), (0, − 1
12 ,

1
4 , 0)), ((

11
4 , 0, 0, − 1

12),
(0, 1

4 ,
1
4 , 0)), ((

11
4 , 0, 0, − 1

12), (0,
7
12 ,

1
4 , 0)), ((

11
4 , 0, 0,

1
12), (0, −1

4 ,
1
4 , 0)), ((

11
4 , 0,

0, 1
12), (0,

1
12 ,

1
4 , 0)), ((

11
4 , 0, 0,

1
12), (0,

5
12 ,

1
4 , 0)), ((

11
4 , 0, 0,

1
12), (0,

7
12 , −1

4 , 0)),
((176 , 0, 0, 0), (0, 0,

1
6 , 0)), ((3, 0, 0, −1

6), (0,
1
6 , 0, 0)), ((3, 0, 0, 0), (0,

1
3 , 0, 0)), ((3,

0, 0, 0), (0, 1, 0, 0)), ((3, 0, 0, 1
6), (0,

1
6 , 0, 0)), ((

13
4 , 0, 0, − 1

12), (0,
1
12 ,

1
4 , 0)), ((

13
4 ,

0, 0, − 1
12), (0,

5
12 ,

1
4 , 0)), ((

13
4 , 0, 0,

1
12), (0, − 5

12 ,
1
4 , 0)), ((

13
4 , 0, 0,

1
12), (0, − 1

12 ,
1
4 ,

0)) and ((72 , 0, 0, 0), (0,
1
2 , 0, 0)).

192 Thomas Bellitto

Index

|| · ||1, 39
|| · ||2, 39
|| · ||∞, 39

ε, 46
Λ-class, 143

Λ-equivalence, 143

τ , 81
χ(R2), 103

acyclicity (graph), 35

acyclicity (walk and word), 65

adjacency, 18
alphabet, 46

An, 40
approximation (algorithm), 33

arc, 19

Arden lemma, 49
automaton, 47

automorphism (graph), 25

Bachoc-Robins conjecture, 107

basis of a lattice, 40
bipartite graph, 21

block structure, 107

boolean expression, 31

chromatic number, 23
chromatic number of the plane, of the

space, 103

chromaticity, 23

clause, 31
clique, 26

clique number, 26
closed neighbourhood, 18

co-connected component, co-cc, 80

co-planarity, 22
colour class, 23

colourability, 23
colouring, 23
compatibility (Λ-classes), 144
complementary graph, 21
complete bipartite graph, 21
complete graph, 21
complete traffic monitoring, 63
completeness (complexity), 30
conjunctive normal form, 31
connected component, cc, 35
connecting hypergraph, 82
connecting transition set, 78
connectivity, 35
connectivity (forbidden-transition graph),

36
consecutive arcs, 19
constraint (linear programming), 50
Cook-Levin theorem, 32
cubic lattice, 40
cut vertex, 84
cycle, 34
cycle (graph class), Cn, 21

degree, 18
density (of a measurable set), 105
destination (walk), 34
dichotomy theorem, 159
directed forbidden-transition graph, 36
directed graph, 18
discrete set, 41
discretization lemma, 112
discriminating code, 29
distance (geometry), 38
distance (graph), 34
Dn, 40
dominating set, 26
domination number, 26

193

INDEX

edge, 18
edge-colouring, 25
edge-transitivity, 26
elementary walk, 34
elongated dodecahedron, 44

endpoint of an edge, 18
Erdős conjecture, 106
Euclidean norm, 39
extremity (walk), 34

face-to-face tiling, 41
factor, 46

feasibility (linear programming), 51
feasible solution (linear programming), 51
final state (automaton), 47
fold-colouring, 133
forbidden-transition graph, FTG, 36

fractional clique number, 135
FTG-reachable language, 70

gearwheel, 98
graph, 18
graph cover, 157

Hadwiger-Nelson problem, 103
hardness (complexity), 30

Hell-Nešetřil theorem, 160
hexagonal prism, 44
homomorphism, 23
homomorphism (directed graph), 24
hyperedge, 28

hypergraph, 28

identification on a language, 59
identifying code (graph), 27
identifying code (hypergraph), 29
in-degree, 19
in-injectivity, 158

in-neighbour, 19
incidence, 18
independence number, 26
independence ratio, 108
independent set, 26

induced distance, 38
induced subgraph, 20
initial state (automaton), 47
Integer Linear Program (ILP), 52

ios-injectivity, 158
iot-injectivity, 158

irreflexivity (graph), 19
isomorphism (graph), 25

Ki,j, 21
Kleene star, Kleene closure, 47

Kn, 21

language, 46

lattice, 40
leaf, 35

length (walk), 34
limit superior, 18
line graph, 25

linear program, 50
local-injectivity, 158

loop, 18

max-reduced form of a word, 73
maximum degree of a graph, 18
measurable chromatic number, 104

Minimum connecting transition set, MCTS,
78

minimum degree of a graph, 18

mixed integer linear program, 52
multigraph, 18
multiple edges, 18

neighbour, 18

norm, 38
NP, 30

objective function, 50
open neighbourhood, 18

opposite arcs, 19
Optimal Connecting HyperGraph, OCGH,

82
optimal solution (linear programming),

51

optimal weighted independence ratio, 131
optimal weighting, 131

orbit, 25
orientation, 19
oriented graph, 19

origin of an arc, 19
out-degree, 19

194 Thomas Bellitto

INDEX

out-neighbour, 19

P, 30
parallel edges, 18
parallelohedron, 41
path, 34
path (graph class), Pn, 21
permutohedron, 44
planar embedding, 22
planarity, 22
polyhedron, 39
polynomial equivalence, 30
polynomial reduction, 30
polytope, 39
polytope distance, 39
polytope norm, 39
prefix, 46
projection of a word on a subalphabet,

59
proper colouring, 23
Property D, 114

rationality (language), 46
reachable language, 64
recognition, 48
k-reducibility, 182
reduction theorem (FTG), 74
reduction theorem (usual graph), 67
reflexive tournament, 21
reflexivity (graph), 19
regular expression, 47
regular polytope, 39
k-regularity, 146
removable factor, 74
restricted traffic monitoring, 70
restriction of a language, 65
k-restriction, 182
rhombic dodecahedron, 44

SAT, 31
satisfiability, 31
separating code (graph), 27
separating code (hypergraph), 29
separating set (words), 61
separation on a language, 59
signature of a vertex (graph), 27
signature of a vertex (hypergraph), 28

signature of a walk, 57
simple graph, 18
solution (linear programming), 51
spanning tree, 35
star, Sn, 21

starting point (walk), 34
state (automaton), 47
strong connectivity, 35
strongly connected component, 35
subcubic graph, 161

subgraph, 20
subword, 46
suffix, 46
symmetric directed graph, 19
symmetric weighting, 137

T4, 161

T5, 166
target of a homomorphism, 23
target of an arc, 19
T -compatibility of a walk, 36
T -connectivity, 78

test cover, 29
tiling by translation, 41
tournament, 21
traffic monitoring, 56
transition (directed graph), 36

transition (undirected graph), 36
transition function (automaton), 48
transition of an automaton, 47
tree, 35
truncated octahedron, 44

unit ball, 38

unit-distance graph, 103
usual graph, 36

vertex, 18
vertex-transitivity, 25
Voronöı cell, Voronöı region, 40
Voronöı conjecture, 42

Voronöı hexagon, 43

walk, 33
walk (directed graph), 34
weighted discretization lemma, 132
weighted graph, 130

Walks, Transitions and Geometric Distances in Graphs. 195

INDEX

weighted independence number, 131
weighted independence ratio, 131
word, 46

196 Thomas Bellitto

Bibliography

[1] Mustaq Ahmed and Anna Lubiw. Shortest paths avoiding forbidden subpaths.
In 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, pages
63–74, 2009.

[2] Dean N. Arden. Delayed-logic and finite-state machines. In Proceedings of
the 2Nd Annual Symposium on Switching Circuit Theory and Logical Design
(SWCT 1961), FOCS ’61, pages 133–151, Washington, DC, USA, 1961. IEEE
Computer Society.

[3] Gabriela R. Argiroffo, Silvia M. Bianchi, and Annegret Katrin Wagler. Poly-
hedra associated with identifying codes. Electronic Notes in Discrete Mathe-
matics, 44:175–180, 2013.

[4] Christine Bachoc, Thomas Bellitto, Philippe Moustrou, and Arnaud Pêcher.
Weighted independence ratio of geometric distance graphs. ICGT 2018.

[5] Christine Bachoc, Thomas Bellitto, Philippe Moustrou, and Arnaud Pêcher.
On the density of sets avoiding parallelohedron distance 1. CoRR,
abs/1708.00291, 2017.

[6] Christine Bachoc, Alberto Passuello, and Alain Thiery. The density of sets
avoiding distance 1 in Euclidean space. Discrete Comput. Geom., 53(4):783–
808, 2015.

[7] Stefan Bard, Thomas Bellitto, Christopher Duffy, Gary MacGillivray, and
Feiran Yang. Complexity of locally-injective homomorphisms to tournaments.
CoRR, abs/1710.08825, under revision for DMTCS, 2018.

[8] Cristina Bazgan, Bruno Escoffier, and Vangelis Th. Paschos. Completeness
in standard and differential approximation classes: Poly-(d)apx- and (d)ptas-
completeness. Theor. Comput. Sci., 339(2-3):272–292, 2005.

[9] Thomas Bellitto. Separating codes and traffic monitoring. Theoretical Com-
puter Science, 717:73 – 85, 2018. Selected papers presented at the 11th Inter-
national Conference on Algorithmic Aspects of Information and Management
(AAIM 2016).

[10] Thomas Bellitto and Benjamin Bergougnoux. On minimum connecting tran-
sition sets in graphs. WG 2018.

197

BIBLIOGRAPHY

[11] Thomas Bellitto and Arnaud Pêcher. Optimal weighting to minimize the
independence ratio of a graph. ISMP 2018.

[12] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1st edition, 1997.

[13] Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arka-
diusz Socala, and Marcin Wrochna. On directed feedback vertex set parame-
terized by treewidth. CoRR, abs/1707.01470, 2017.

[14] Koen M. J. De Bontridder, Bjarni V. Halldórsson, Magnús M. Halldórsson, Cor
A. J. Hurkens, Jan Karel Lenstra, R. Ravi, and Leen Stougie. Approximation
algorithms for the test cover problem. Math. Program., 98(1-3):477–491, 2003.

[15] Karl Heinz Borgwardt. Probabilistic analysis of simplex algorithms. In Ency-
clopedia of Optimization, Second Edition, pages 3073–3084. 2009.

[16] Gaëlle Brevier, Romeo Rizzi, and Stéphane Vialette. Pattern matching in
protein-protein interaction graphs. In Fundamentals of Computation Theory,
16th International Symposium, FCT 2007, Budapest, Hungary, August 27-30,
2007, Proceedings, pages 137–148, 2007.

[17] N. G. De Bruijn and P. Erdős. A colour problem for infinite graphs and a
problem in the theory of relations, 1951.

[18] Andrei Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS), pages
319–330, 2017.

[19] Russell J. Campbell. Reflexive injective oriented colourings. M.Sc. Thesis,
Department of mathematics and Statistics, University of Victoria, Canada,
2009.

[20] Russell J. Campbell, Nancy E. Clarke, and Gary MacGillivray. Injective ho-
momorphisms to small tournaments. Unpublished, 2016.

[21] Russell J. Campbell, Nancy E. Clarke, and Gary MacGillivray. Obstructions
to some injective oriented colourings. Unpublished, 2016.

[22] Emmanuel Charbit, Irène Charon, Gérard D. Cohen, Olivier Hudry, and An-
toine Lobstein. Discriminating codes in bipartite graphs: bounds, extremal
cardinalities, complexity. Adv. in Math. of Comm., 2(4):403–420, 2008.

[23] Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein. Dis-
criminating codes in (bipartite) planar graphs. Eur. J. Comb., 29(5):1353–
1364, 2008.

[24] Irène Charon, Olivier Hudry, and Antoine Lobstein. Minimizing the size of an
identifying or locating-dominating code in a graph is np-hard. Theor. Comput.
Sci., 290(3):2109–2120, 2003.

198 Thomas Bellitto

BIBLIOGRAPHY

[25] C. C. Chen and David E. Daykin. Graphs with hamiltonian cycles having
adjacent lines different colors. J. Comb. Theory, Ser. B, 21(2):135–139, 1976.

[26] Min Chen, Gena Hahn, André Raspaud, and Weifan Wang. Some results on
the injective chromatic number of graphs. J. Comb. Optim., 24(3):299–318,
2012.

[27] J. H. Conway and N. J. A. Sloane. Low-dimensional lattices. VI. Voronŏı
reduction of three-dimensional lattices. Proc. Roy. Soc. London Ser. A,
436(1896):55–68, 1992.

[28] J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere-packings, Lattices, and
Groups. Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[29] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5,
1971, Shaker Heights, Ohio, USA, pages 151–158, 1971.

[30] Bruno Courcelle. The monadic second order logic of graphs VI: on several rep-
resentations of graphs by relational structures. Discrete Applied Mathematics,
54(2-3):117–149, 1994.

[31] Daniel W. Cranston and Landon Rabern. The fractional chromatic number of
the plane. Combinatorica, 37(5):837–861, 2017.

[32] H. T. Croft. Incidence incidents. Eureka (Cambridge), 30:22–26, 1967.

[33] George B. Dantzig. Inductive proof of the simplex method. IBM Journal of
Research and Development, 4(5):505–506, 1960.

[34] Aubrey D.N.J. de Grey. The chromatic number of the plane is at least 5.
CoRR, abs/1804.02385, 2018.

[35] B. Delaunay. Sur la partition régulière de l’espace à 4 dimensions. I, II. Bull.
Acad. Sci. URSS, 2:79–110, 1929.

[36] Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2016.

[37] Dietmar Dorninger. Hamiltonian circuits determining the order of chromo-
somes. Discrete Applied Mathematics, 50(2):159–168, 1994.

[38] Alain Doyon, Gena Hahn, and André Raspaud. Some bounds on the injective
chromatic number of graphs. Discrete Mathematics, 310(3):585–590, 2010.

[39] Zdenek Dvorak. Two-factors in orientated graphs with forbidden transitions.
Discrete Mathematics, 309(1):104–112, 2009.

[40] R. M. Erdahl. Zonotopes, dicings, and Voronoi’s conjecture on parallelohedra.
European J. Combin., 20(6):527–549, 1999.

Walks, Transitions and Geometric Distances in Graphs. 199

BIBLIOGRAPHY

[41] Paul Erdős. Some remarks on set theory. Proc. Am. Math. Soc., 1:127–141,
1950.

[42] Geoffrey Exoo and Dan Ismailescu. The chromatic number of the plane is at
least 5 - a new proof. CoRR, arXiv:1805.00157v1, 2018.

[43] Isabelle Fagnot, Gaëlle Lelandais, and Stéphane Vialette. Bounded list in-
jective homomorphism for comparative analysis of protein-protein interaction
graphs. J. Discrete Algorithms, 6(2):178–191, 2008.

[44] K.J Falconer. The realization of distances in measurable subsets covering rn.
Journal of Combinatorial Theory, Series A, 31(2):184 – 189, 1981.

[45] Guillaume Fertin, Romeo Rizzi, and Stéphane Vialette. Finding exact and
maximum occurrences of protein complexes in protein-protein interaction
graphs. In Mathematical Foundations of Computer Science 2005, 30th In-
ternational Symposium, MFCS 2005, Gdansk, Poland, August 29 - September
2, 2005, Proceedings, pages 328–339, 2005.

[46] Jiŕı Fiala and Jan Kratochv́ıl. Complexity of partial covers of graphs. In
Algorithms and Computation, 12th International Symposium, ISAAC 2001,
Christchurch, New Zealand, December 19-21, 2001, Proceedings, pages 537–
549, 2001.

[47] Jiŕı Fiala and Jan Kratochv́ıl. Partial covers of graphs. Discussiones Mathe-
maticae Graph Theory, 22(1):89–99, 2002.

[48] Jiŕı Fiala and Jan Kratochv́ıl. Locally injective graph homomorphism: Lists
guarantee dichotomy. In Graph-Theoretic Concepts in Computer Science, 32nd
International Workshop, WG 2006, Bergen, Norway, June 22-24, 2006, Re-
vised Papers, pages 15–26, 2006.

[49] Jiŕı Fiala, Jan Kratochv́ıl, and Attila Pór. On the computational complexity
of partial covers of theta graphs. Discrete Applied Mathematics, 156(7):1143–
1149, 2008.

[50] Herbert Fleischner and Bill Jackson. Compatible path-cycle-decompositions
of plane graphs. J. Comb. Theory, Ser. B, 42(1):94–121, 1987.

[51] Peter Frankl and Richard M. Wilson. Intersection theorems with geometric
consequences. Combinatorica, 1(4):357–368, 1981.

[52] Martin Gardner. The Second Scientific American Book of Mathematical Puz-
zles and Diversions. University Of Chicago Press, 1961, reeditied in 1987.

[53] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[54] Christopher D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Grad-
uate texts in mathematics. Springer, 2001.

200 Thomas Bellitto

BIBLIOGRAPHY

[55] George Grätzer. Lattice Theory: Foundation. Springer Basel, 1st edition.
edition, 2011.

[56] Gregory Gutin and Eun Jung Kim. Properly coloured cycles and paths: Re-
sults and open problems. In Graph Theory, Computational Intelligence and
Thought, Essays Dedicated to Martin Charles Golumbic on the Occasion of
His 60th Birthday, pages 200–208, 2009.

[57] H. Hadwiger. Ein Überdeckungssatz für den euklidischen raum. Portugal.
Math., 4:140–144, 1944.

[58] Gena Hahn, Jan Kratochv́ıl, Jozef Sirán, and Dominique Sotteau. On the
injective chromatic number of graphs. Discrete Mathematics, 256(1-2):179–
192, 2002.

[59] Magnús M. Halldórsson and Jaikumar Radhakrishnan. Greed is good: Approx-
imating independent sets in sparse and bounded-degree graphs. Algorithmica,
18(1):145–163, 1997.

[60] Teresa W. Haynes, Debra J. Knisley, Edith Seier, and Yue Zou. A quantitative
analysis of secondary rna structure using domination based parameters on
trees. BMC Bioinformatics, 7:108, 2006.

[61] Pavol Hell and Jaroslav Nešetřil. On the complexity of H -coloring. J. Comb.
Theory, Ser. B, 48(1):92–110, 1990.

[62] Ian Holyer. The np-completeness of edge-coloring. SIAM J. Comput.,
10(4):718–720, 1981.

[63] Iiro S. Honkala, Tero Laihonen, and Sanna M. Ranto. On strongly identifying
codes. Discrete Mathematics, 254(1-3):191–205, 2002.

[64] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[65] Tommy R Jensen and Bjarne Toft. Graph coloring problems, 1995.

[66] Mamadou Moustapha Kanté, Christian Laforest, and Benjamin Momège. An
exact algorithm to check the existence of (elementary) paths and a generalisa-
tion of the cut problem in graphs with forbidden transitions. In SOFSEM 2013:
Theory and Practice of Computer Science, 39th International Conference on
Current Trends in Theory and Practice of Computer Science, Špindler̊uv Mlýn,
Czech Republic, January 26-31, 2013. Proceedings, pages 257–267, 2013.

[67] Mamadou Moustapha Kanté, Fatima Zahra Moataz, Benjamin Momège, and
Nicolas Nisse. Finding paths in grids with forbidden transitions. In Graph-
Theoretic Concepts in Computer Science - 41st International Workshop, WG
2015, Garching, Germany, June 17-19, 2015, Revised Papers, pages 154–168,
2015.

Walks, Transitions and Geometric Distances in Graphs. 201

BIBLIOGRAPHY

[68] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings
of a symposium on the Complexity of Computer Computations, held March 20-
22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York., pages 85–103, 1972.

[69] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On a
new class of codes for identifying vertices in graphs. IEEE Transactions on
Information Theory, 44(2):599–611, 1998.

[70] Tamás Keleti, Máté Matolcsi, Fernando Mário de Oliveira Filho, and Imre Z.
Ruzsa. Better bounds for planar sets avoiding unit distances. Discrete &
Computational Geometry, 55(3):642–661, 2016.

[71] Jeong Han Kim, Oleg Pikhurko, Joel H. Spencer, and Oleg Verbitsky. How
complex are random graphs in first order logic? Random Struct. Algorithms,
26(1-2):119–145, 2005.

[72] Victor Klee and George J. Minty. How good is the simplex algorithm? In
O. Shisha, editor, Inequalities, volume III, pages 159–175. Academic Press,
New York, 1972.

[73] S. C. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, 1956.

[74] William Klostermeyer and Gary MacGillivray. Homomorphisms and oriented
colorings of equivalence classes of oriented graphs. Discrete Mathematics,
274(1-3):161–172, 2004.

[75] Anton Kotzig. Moves without forbidden transitions in a graph. Matematický
časopis, 18(1):76–80, 1968.

[76] Moshe Laifenfeld, Ari Trachtenberg, Reuven Cohen, and David Starobinski.
Joint monitoring and routing in wireless sensor networks using robust identi-
fying codes. MONET, 14(4):415–432, 2009.

[77] D. G. Larman. A note on the realization of distances within sets in euclidean
space. Commentarii Mathematici Helvetici, 53(1):529–535, Dec 1978.

[78] D. G. Larman and C. A. Rogers. The realization of distances within sets in
Euclidean space. Mathematika, 19:1–24, 1972.

[79] Kwangil Lee and Mark A. Shayman. Optical network design with optical
constraints in IP/WDM networks. IEICE Transactions, 88-B(5):1898–1905,
2005.

[80] L. A. Levin. Universal sequential search problems. Probl. Peredachi Inf.,
9:115–116, 1973.

[81] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982.

202 Thomas Bellitto

BIBLIOGRAPHY

[82] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating min-
imization problems. In Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages
286–293, 1993.

[83] Gary MacGillivray, André Raspaud, and Jacobus Swarts. Obstructions to
locally injective oriented improper colourings. European J. Combin., 35:402–
412, 2014.

[84] Gary MacGillivray and Jacobus Swarts. The complexity of locally injective
homomorphisms. Discrete Mathematics, 310(20):2685–2696, 2010.

[85] S. Maheshwari. Traversal marker placement problem are np-complete. In
Research report no CU-CS-092-76, Dept. of Computer Science, University of
Colorado at Boulder, 1976.

[86] P. McMullen. Convex bodies which tile space by translation. Mathematika,
27(1):113–121, 1980.

[87] Gernot Metze, Donald R. Schertz, Kilin To, Gordon Whitney, Charles R.
Kime, and Jeffrey D. Russell. Comments on “derivation of minimal complete
sets of test-input sequences using boolean differences. IEEE Trans. Computers,
24(1):108, 1975.

[88] Philippe Meurdesoif, Pierre Pesneau, and François Vanderbeck. Meter instal-
lation for monitoring network traffic. In International Network Optimization
Conference (INOC), Spa, Belgium, 2007.

[89] Hermann Minkowski. Allgemeine lehrsätze über die convexen polyeder.
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,
Mathematisch-Physikalische Klasse, 1897:198–220, 1897.

[90] B. Moret and H. Shapiro. On minimizing a set of tests. SIAM Journal on
Scientific and Statistical Computing, 6(4):983–1003, 1985.

[91] L. Moser and W. Moser. Solution to problem 10. Canadian mathematical
bulletin, 4:187–189, 1961.

[92] Philippe Moustrou. Geometric distance graphs, lattices and polytopes. Theses,
Université de Bordeaux, December 2017.

[93] Patrenahalli M. Narendra and Keinosuke Fukunaga. A branch and bound
algorithm for feature subset selection. IEEE Trans. Computers, 26(9):917–
922, 1977.

[94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[95] David Peleg. Low stretch spanning trees. In Mathematical Foundations of
Computer Science 2002, 27th International Symposium, MFCS 2002, Warsaw,
Poland, August 26-30, 2002, Proceedings, pages 68–80, 2002.

Walks, Transitions and Geometric Distances in Graphs. 203

BIBLIOGRAPHY

[96] A. M. Raigorodskii. On the chromatic number of a space. Russian Mathemat-
ical Surveys, 55(2):351, 2000.

[97] A. M. Raigorodskii. The Erdős-Hadwiger problem and the chromatic numbers
of finite geometric graphs. Sbornik: Mathematics, 196(1):115, 2005.

[98] D. E. Raiskii. Realization of all distances in a decomposition of the space rn
into n+1 parts. Mathematical notes of the Academy of Sciences of the USSR,
7(3):194–196, Mar 1970.

[99] Michaël Rao. Exhaustive search of convex pentagons which tile the plane.
CoRR, abs/1708.00274, 2017.

[100] Pawel Rzazewski. Exact algorithm for graph homomorphism and locally in-
jective graph homomorphism. Inf. Process. Lett., 114(7):387–391, 2014.

[101] Suk Jai Seo and Peter J. Slater. Open neighborhood locating-dominating in
trees. Discrete Applied Mathematics, 159(6):484–489, 2011.

[102] Suk Jai Seo and Peter J. Slater. Open neighborhood locating-domination for
infinite cylinders. In ACM Southeast Regional Conference, pages 334–335,
2011.

[103] Dmitry Shiryaev. Personal communication.

[104] Alexander Soifer. The mathematical coloring book: Mathematics of coloring
and the colorful life of its creators. Springer Science & Business Media, 2008.

[105] Benny Sudakov. Robustness of graph properties. CoRR, abs/1610.00117v1,
2016.

[106] Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Dis-
crete Applied Mathematics, 126(2-3):261–273, 2003.

[107] L. A. Székely. Erdős on unit distances and the Szemerédi-Trotter theorems.
In Paul Erdős and his mathematics, II (Budapest, 1999), volume 11 of Bolyai
Soc. Math. Stud., pages 649–666. János Bolyai Math. Soc., Budapest, 2002.

[108] Rachanee Ungrangsi, Ari Trachtenberg, and David Starobinski. An imple-
mentation of indoor location detection systems based on identifying codes. In
INTELLCOMM, pages 175–189, 2004.

[109] B. A. Venkov. On a class of Euclidean polyhedra. Vestnik Leningrad. Univ.
Ser. Mat. Fiz. Him., 9(2):11–31, 1954.

[110] Gueorgui Voronoi. Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres
primitifs. J. Reine Angew. Math., 134:198–287, 1908.

[111] W. R. Willcox and S. P. Lapage. Automatic construction of diagnostic tables.
Comput. J., 15(3):263–267, 1972.

204 Thomas Bellitto

BIBLIOGRAPHY

[112] W. R. Willcox, S. P. Lapage, and B. Holmes. A review of numerical methods
in bacterial identification. Antonie van Leeuwenhoek, 46(3):233–299, 1980.

[113] Douglas R. Woodall. Distances realized by sets covering the plane. J. Comb.
Theory, Ser. A, 14(2):187–200, 1973.

[114] Dmitry Zhuk. An algorithm for constraint satisfaction problem. In 2017 IEEE
47th International Symposium on Multiple-Valued Logic—ISMVL 2017, pages
1–6. IEEE, New York, 2017.

Walks, Transitions and Geometric Distances in Graphs. 205

	Introduction
	Preliminaries
	Fundamentals of graph theory
	Core definitions
	Homomorphisms and colouring
	Special vertex sets
	Hypergraphs

	Elements of complexity
	P, NP and polynomial reductions
	3-SAT and NP-completeness
	Approximations

	Walks, connectivity and transitions
	Walks and connectivity in usual graphs
	Forbidden-transition graphs

	Polytopes and lattices
	Norms and distances
	Lattices
	Polytopes
	Classification of the parallelohedra in dimension 2 and 3

	Rational languages and automata
	Rational languages
	Automata and recognition

	Linear programming
	Definitions
	Integer linear programming

	Separating codes and traffic monitoring
	Introduction
	The traffic monitoring problem
	Definition
	Limitations of the existing separation models

	A new model of separation: separation on a language
	Presentation of the problem
	Expressiveness of the model

	Separation of a finite set of walks
	Separation of walks with given endpoints
	Study of the reachable languages
	Reduction theorem and resolution

	Separation of walks with forbidden transitions
	Motivation of the problem
	Study of the FTG-reachable languages
	Reduction theorem and resolution

	Conclusion

	Minimum connecting transition sets in graphs
	Introduction
	Polynomial algorithms and structural results
	General bounds
	Connecting hypergraphs
	Polynomial approximation

	NP-completeness
	MCTS in FTGs
	MCTS in usual graphs
	Intuition of the proof

	Conclusion

	Density of sets avoiding parallelohedron distance 1
	Introduction
	Unit-distance graphs and the Hadwiger-Nelson problem
	Density of sets avoiding distance 1

	Preliminary results and method
	Independence ratio of a discrete graph
	Discretization of the problem

	Parallelohedron norms in the plane
	The regular hexagon
	General Voronoï hexagons

	The norms induced by the Voronoï cells of An and Dn
	The lattice An
	The lattice Dn

	The chromatic number of G(Rn,"026B30D "026B30D P)
	Conclusion

	Optimal weighted independence ratio
	Introduction
	Our approach
	Optimal weighted independence ratio
	Weighted discretization lemma
	Fractional chromatic number

	General norms
	Preliminary study
	The algorithm
	The Euclidean plane

	Parallelohedron norms
	-classes and k-regularity
	The algorithm
	Building finite graphs
	The truncated octahedron

	Conclusion

	Complexity of locally-injective homomorphisms to tournaments
	Introduction
	Our problem
	Known results

	Ios-injective homomorphisms
	Ios-injective T4-colouring
	Ios-injective T5-colouring
	Dichotomy theorem

	Iot-injective homomorphisms
	Iot-injective T4-colouring
	Iot-injective T5-colouring
	Dichotomy theorem

	Conclusion

	Conclusion and further work
	Separation on languages and traffic monitoring
	Reducible languages
	Planar instances

	Minimum connecting transition sets
	Sparse graphs
	Stretch of the solution

	Sets avoiding distance 1
	The Euclidean plane and Erdos' conjecture
	Parallelohedra and Bachoc-Robins' conjecture
	Power and limitation of weighted subgraphs

	Locally-injective directed homomorphisms

	Computational bound in the Euclidean plane
	Index
	Bibliography

