

On Minimum Connecting Transition Sets in Graphs

Thomas Bellitto¹ Benjamin BERGOUGNOUX²

Wednesday June 27, 2018

1 - LaBRI, Univ. Bordeaux

2 - LIMOS, Univ. Clermont Auvergne

1 Context

- Forbidden transitions
- Connecting transition sets

2 Our results

- Upper bounds
- Reformulation
- Main results

Motivation

We use **graphs** to model networks in various fields of application (road networks, telecommunication networks, public transit...).

Set of possible walks in a road network
≠ set of walks in the graph.

We need a stronger model !

Forbidden-transition graphs

- **Transition** : pair of adjacent distinct edges.
- **Forbidden-transition graph** : $G = (V, E, T)$ where T is the set of permitted transitions.
- The walk $W = (v_1, v_2, \dots, v_k)$ *uses* the transition $v_i v_{i+1} v_{i+2}$ for all i such that $v_i \neq v_{i+2}$.
- The walk W is *T -compatible* if and only if it only uses transitions from T .

Related works

- Properly-coloured walks in edge-coloured graphs.
- Antidirected walks in digraphs.
- Forbidden subpaths / subwalks.

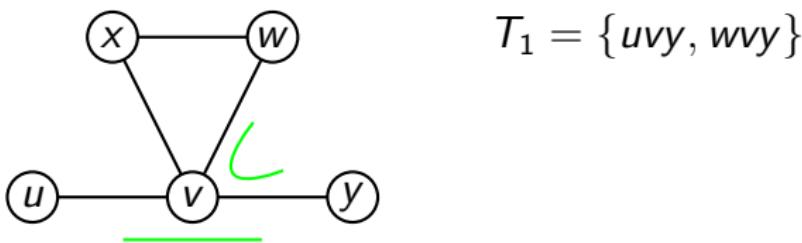
T -connectivity

T -connectivity

A graph $G = (V, E)$ is **T -connected** if and only if there exists a **T -compatible walk** between each pair of vertices.

In this case, we say that T is a **connecting transition set** of G .

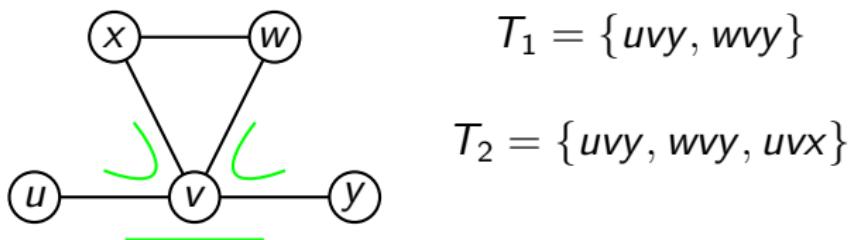
Connecting transition sets



There exists a T_1 -compatible walk between w and every vertex of the graph.

There exists no T_1 -compatible walk between x and u or y .

Connecting transition sets



There exists a T_1 -compatible walk between w and every vertex of the graph.

There exists no T_1 -compatible walk between x and u or y .

The set T_2 is a connecting transition set of the graph.

Minimum connecting transition set

Minimum connecting transition set

Smallest set T such that a graph G is T -connected.
(similar to minimum spanning trees)

Several papers study robustness of graph properties to malfunctionning transitions.

→ Application of minimum connecting transition sets to robust network design ?

1 Context

2 Our results

- Upper bounds
- Reformulation
- Main results

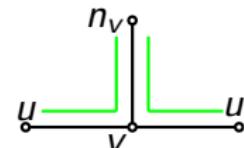
Upper bounds

General case

Pick a neighbour n_v for every vertex v .

$$T = \bigcup_{v \in V} \bigcup_{u \in N(v) \setminus \{n_v\}} \{uvn_v\} \text{ is connecting.}$$

$$|T| = 2|E| - |V|$$



If G is a tree, $|T| = n - 2$ and this construction is optimal!

General upper bound

A minimum connecting transition set of a graph of n vertices has size at most $n - 2$.

Lower bounds and reachable values

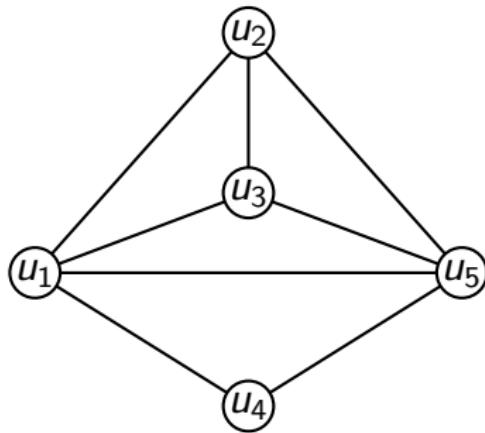
Complete graph : minimum connecting transition set of size 0.

Every value k between 0 and $n - 2$ is reachable : start from a tree of size $k + 2$ and add $n - k + 2$ dominating vertices.

Question

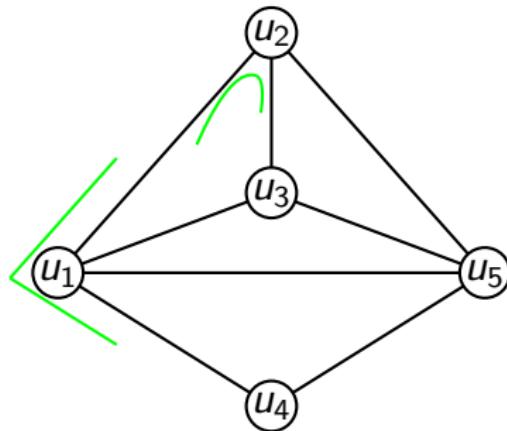
Is the size of a minimum connecting transition set $k - 2$ where k is the number of non-dominating vertices ?

Upper bounds



3 non-dominating vertices.

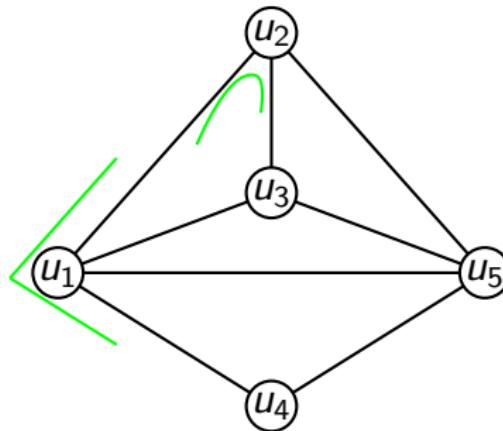
Upper bounds



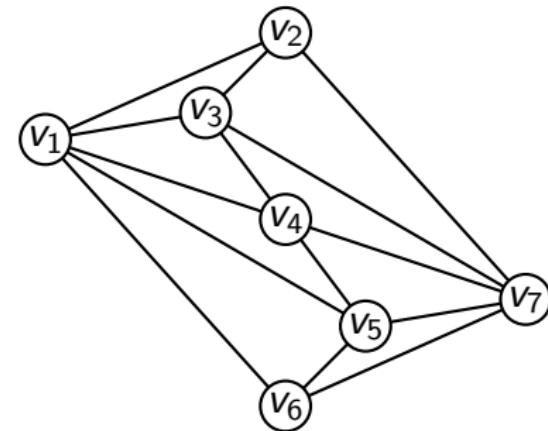
3 non-dominating vertices.

Size of MCTS : 2.

Upper bounds

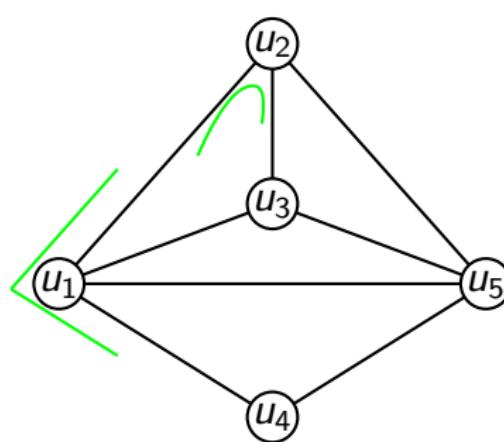


3 non-dominating vertices.
Size of MCTS : 2.

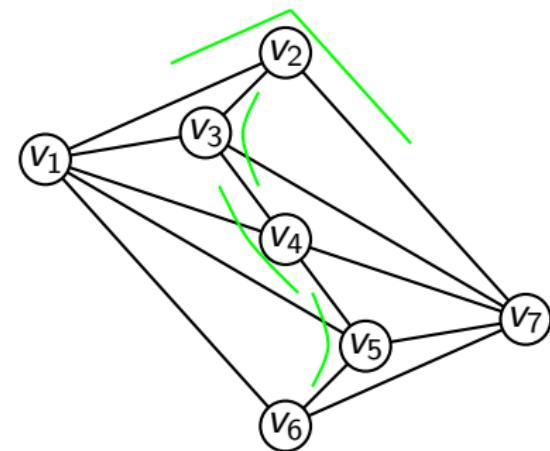


7 non-dominating vertices.

Upper bounds

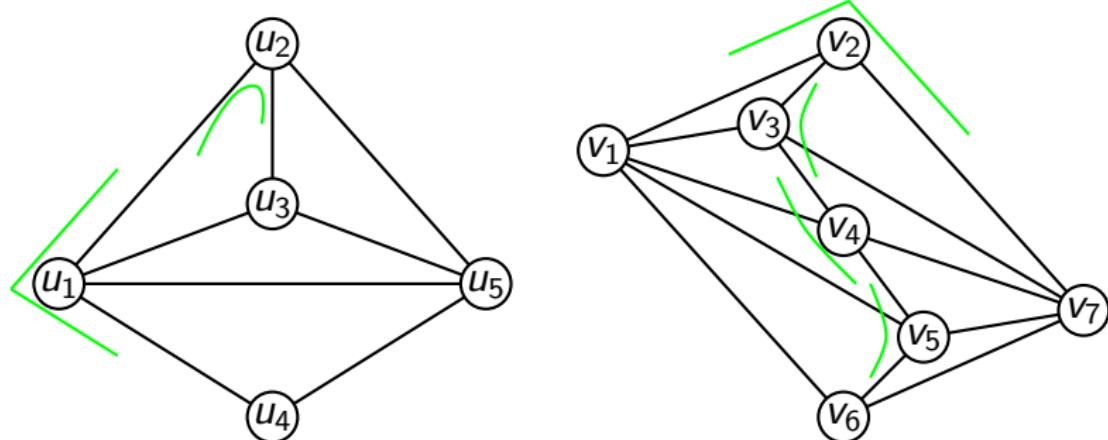


3 non-dominating vertices.
Size of MCTS : 2.



7 non-dominating vertices.
Size of MCTS : 4.

Upper bounds



3 non-dominating vertices.

Size of MCTS : 2.

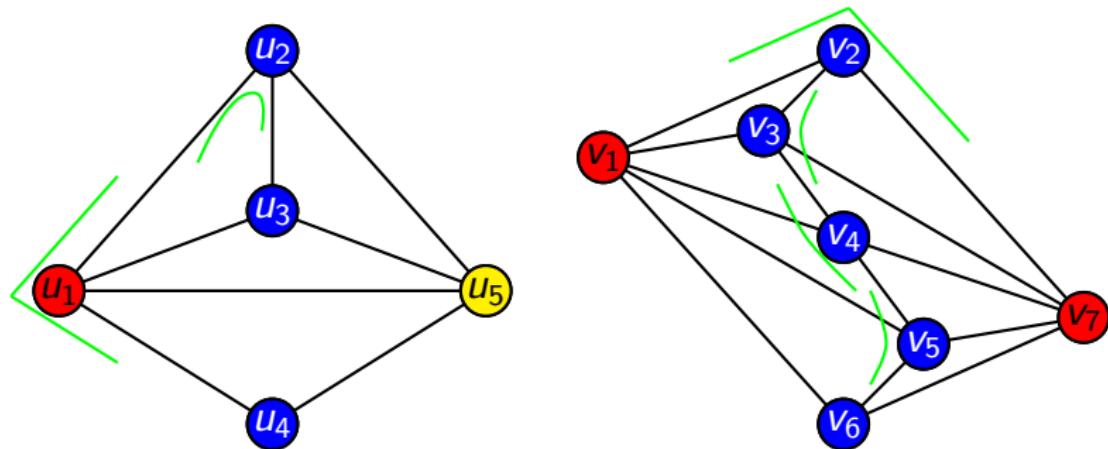
7 non-dominating vertices.

Size of MCTS : 4.

Key

Look at the connected components of the complementary graph! (co-cc)

Upper bounds



3 non-dominating vertices.

Size of MCTS : 2.

7 non-dominating vertices.

Size of MCTS : 4.

Key

Look at the connected components of the complementary graph! (co-cc)

Improved upper bound

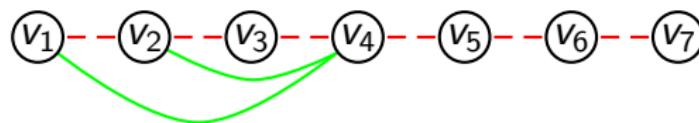
Theorem

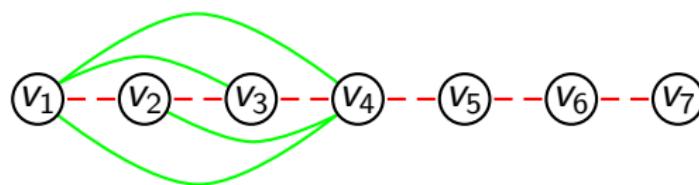
Every connected graph G has a connecting transition set of size $\tau(G)$ where

$$\tau(G) = \sum_{\substack{C \text{ co-cc of } G \\ |C| \geq 2}} \begin{cases} |C| - 2 & \text{if } G[C] \text{ is connected} \\ |C| - 1 & \text{otherwise} \end{cases}$$

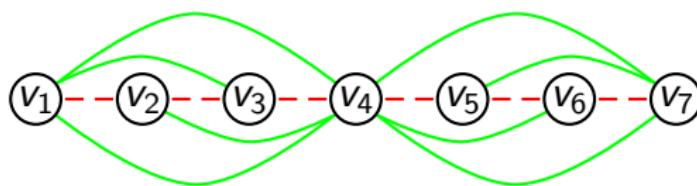
Co- P_7

Reformulation

Co- P_7 

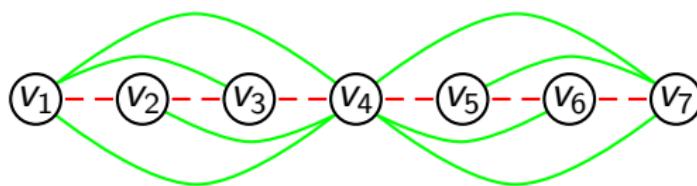
Co- P_7 

Reformulation

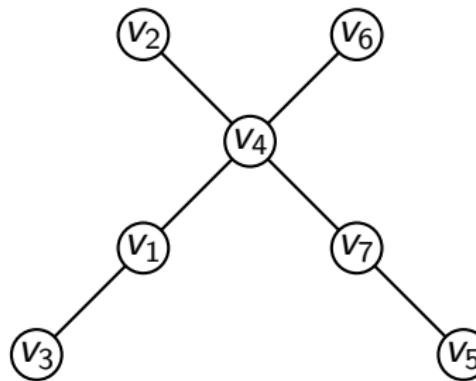
Co- P_7 

Connecting transition set of size 4 but $\tau(\overline{P_7}) = 5$.

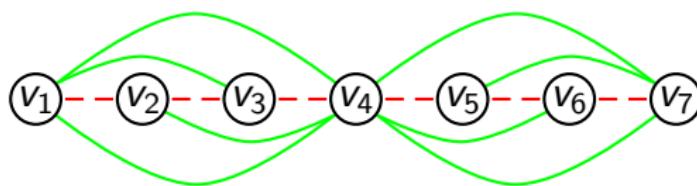
Reformulation

Co- P_7 

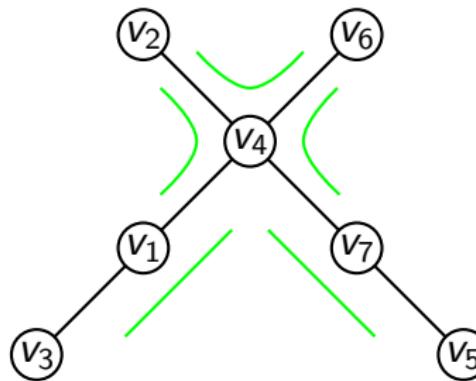
Connecting transition set of size 4 but $\tau(\overline{P_7}) = 5$.



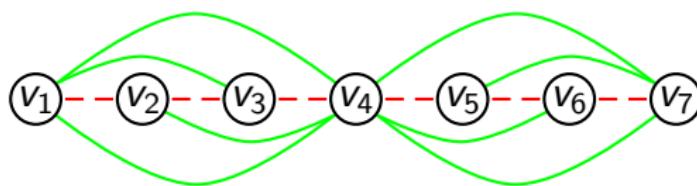
Reformulation

Co- P_7 

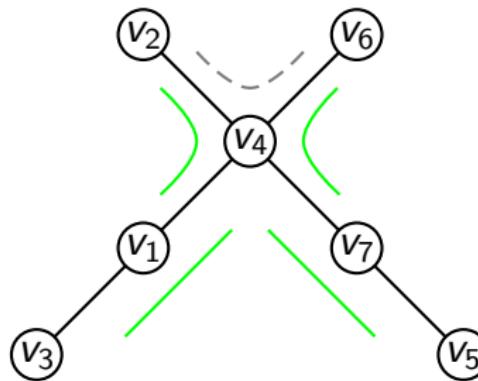
Connecting transition set of size 4 but $\tau(\overline{P_7}) = 5$.



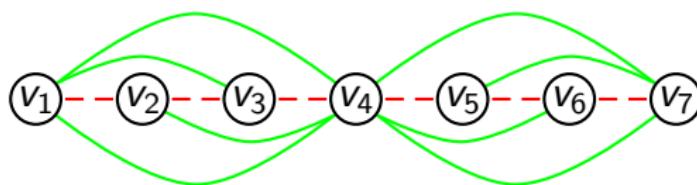
Reformulation

Co- P_7 

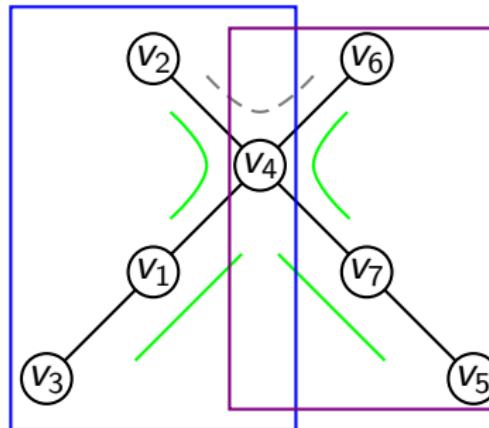
Connecting transition set of size 4 but $\tau(\overline{P_7}) = 5$.

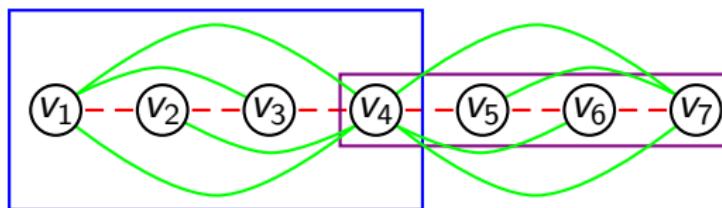


Reformulation

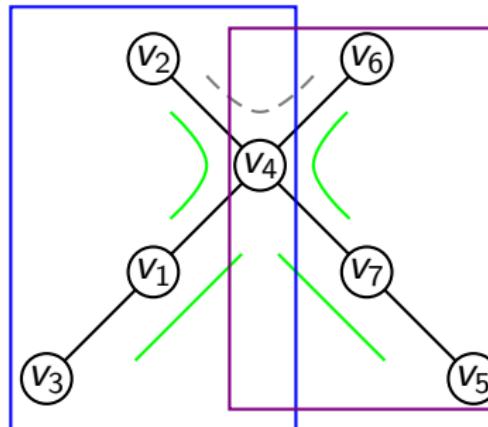
Co- P_7 

Connecting transition set of size 4 but $\tau(\overline{P_7}) = 5$.



Co- P_7 

Connecting transition set of size 4 but $\tau(\overline{P_7}) = 5$.



Optimal connecting hypergraph

Connecting hypergraph :

A *connecting hypergraph* of a connected graph G is a set H of subsets of $V(G)$ called *connecting hyperedges*, such that

- For all $e \in H$, $|e| \geq 2$.
- For all $e \in H$, $G[e]$ is connected.
- For all $uv \notin E(G)$, there exists $e \in H$ such that $u, v \in e$

$$\text{cost}(H) = \sum_{e \in H} (|e| - 2)$$

Optimal connecting hypergraph

Connecting hypergraph :

A *connecting hypergraph* of a connected graph G is a set H of subsets of $V(G)$ called *connecting hyperedges*, such that

- For all $e \in H$, $|e| \geq 2$.
- For all $e \in H$, $G[e]$ is connected.
- For all $uv \notin E(G)$, there exists $e \in H$ such that $u, v \in e$

$$\text{cost}(H) = \sum_{e \in H} (|e| - 2)$$

Finding a **minimum connecting transition set** is equivalent to finding **connecting hypergraph of minimum cost** !

Complexity and approximation

Complexity

Finding a minimum connecting transition set of a graph is NP-complete.

Complexity and approximation

Complexity

Finding a minimum connecting transition set of a graph is NP-complete.

Approximation

The size of a minimum connecting transition of a graph G is at least $\frac{2}{3}\tau(G)$ (tight bound) where

$$\tau(G) = \sum_{\substack{C \text{ co-cc of } G \\ |C| \geq 2}} \begin{cases} |C| - 2 & \text{if } G[C] \text{ is connected} \\ |C| - 1 & \text{otherwise} \end{cases}$$

→ We have a $O(|V|^2)$ $\frac{3}{2}$ -approximation !

Our results

- Bounds or exact results for several families of graphs (trees, graphs with cut-vertices).
- Reformulation of the problem.
- Polynomial $\frac{3}{2}$ -approximation.
- Proof of NP-completeness (even when restricted to co-planar graphs).

Future works

- Sparse graphs (bounded treewidth ? bounded maximum average degree ? planar ?).
- Stretch of the minimum connecting sets.
- Starting with forbidden transitions.
- Directed graphs.

Thank you !